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Abstract

The study of Augmented Reality (AR) in transportation has been growing rapidly, and it
could be used in communicating the intention of an approaching automated vehicle (AV) to
pedestrians. However, it remains unclear whether the adoption of AR increases pedestrians’
visual load. This study examined pedestrians’ gaze behaviour and crossing decisions when
exposed to AR interfaces positioned as a heads-up display (HUD), at the crossing path, or
along the AV’s travel path. Thirty participants completed trials in a CAVE-based virtual
reality (VR) pedestrian lab. We analysed gaze fixations on the vehicle and AR interfaces
during the period leading up to crossing initiations. Results showed that, compared to
baseline conditions without AR, AR conditions were associated with reduced visual load,
indicating that AR did not overburden attention. Interfaces rated as more intuitive and
repeated exposures enhanced this effect, though these patterns may also indicate
overreliance. Among the different placements, a HUD yielded the greatest decrease in visual
load, followed by AR on the crossing path, and then AR along the vehicle’s path. Gaze heat
maps showed that pedestrians increasingly focused their attention on the vehicle as it
approached, regardless of AR locations. Crossing probabilities revealed that in baseline
conditions, pedestrians were most likely to cross when the AV was closest and stopped,
whereas with AR present, crossings were more likely at greater distances, reflecting earlier
recognition of intent. Overall, these findings suggest that AR, if intuitively designed, does
not visually overload pedestrians and can support safer crossing decisions, although the

potential for overreliance requires further study.

Keywords: Augmented Reality; Automated Vehicles; Pedestrian Safety; Gaze Behaviour;

Visual Load; Crossing Decisions
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1 Introduction

The introduction of automated vehicles (AVs) leads to a significant transition in
transportation, promising many benefits, including a major reduction in accidents involving
vulnerable road users by eliminating human errors (Anderson et al., 2016). However, higher-
level AVs, which operate without human drivers, are currently unable to effectively
communicate their own intentions to surrounding traffic. This limitation can lead to
frustrating standoffs, particularly in ambiguous situations where both the AV and other road
users are trying to occupy the same space but are uncertain about who has the right of way,
such as at unsignalized crossings (Brown et al., 2023; Loke, 2019; Rasouli et al., 2018;
Vinkhuyzen & Cefkin, 2016). The absence of a human driver or traffic signals at these
crossings prevents clear communication, further complicating the determination of priority

and increasing the likelihood of hesitation or hazardous interactions.

External Human-Machine Interfaces (eHMIs) have been proposed as a solution for bridging
this communication gap by externally displaying information about AV intentions to
pedestrians (Faas et al., 2020; Guo et al., 2022; Hochman et al., 2020; Hollander et al., 2019;
Lee et al., 2022; Lyu et al., 2024; Wilbrink et al., 2021). Although eHMIs can help pedestrians
make quicker decisions and increase their perceived safety (Faas et al., 2020; Holldnder et
al., 2019), they face challenges in scalability, particularly for managing multiple interactions
simultaneously and effectively communicating across various distances and directions
(Colley et al., 2020; Dey et al., 2021; Hollander et al., 2022; Lyu et al., 2024; Wilbrink et al.,
2021). These challenges raise concerns about how an AV communicates with specific
pedestrians among many road users and the visibility of eHMlIs in complex, real-world traffic

scenarios (Dey, Habibovic, et al., 2020).

Given these challenges, personalized interaction strategies like Augmented Reality (AR) are
being explored as a complementary approach in assisting with communication for
pedestrian-AV interactions (Calvi et al., 2020; Matviienko et al., 2022; Tabone et al., 2020,
2021, 2023; Tran et al., 2023). AR allows for simultaneous communication with multiple
road users, providing precise, customized visual information to pedestrians (Dey, Habibovic,
et al., 2020). By overlaying digital content onto the physical world, this approach offers

several benefits, such as resolving language barriers through person-specific feedback
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(Tabone et al., 2020), and maintaining users’ situational awareness (Tong et al., 2021).
Although the use of AR for road user communication may seem futuristic and raise concerns
about reliance on costly headsets (Tabone et al., 2020), advancements in wearable AR
technology (e.g., Microsoft HoloLens, Google Glass, Apple Vision Pro) are making its

adoption in AV-pedestrian communication increasingly feasible.

Despite these potential benefits, there are concerns that AR might overly burden
pedestrians with additional visual elements (Tabone et al., 2020). Research in learning and
skill acquisition domains has shown that while mobile AR can decrease cognitive load by
providing direct information, it can also overwhelm users when presenting excessive
information simultaneously (see reviews from Buchner et al., 2022; Suzuki et al., 2024). In
road user interactions, pedestrians may experience cognitive and information overload with
too many visual cues, posing safety risks (Mahadevan et al., 2018; Moore et al., 2019). Eye-
tracking offers a method to measure pedestrians' visual attention, helping to assess whether
they are visually overloaded by these cues. Additionally, research examining gaze fixations,
defined as periods when the eyes remain relatively still and focus on a specific element,
helps gain deeper insights into how pedestrians engage with visual information (Salvucci &
Goldberg, 2000). Longer fixation durations may indicate increased visual effort (He &
McCarley, 2010; Herten et al., 2017; Jacob & Karn, 2003) or difficulty in processing the visual
information (Kotval & Goldberg, 1998; Milton et al., 1950), while shorter fixations suggest
quicker information absorption. However, investigations assessing pedestrians’ gaze
behaviour when exposed to AR interfaces signalling the intentions of Avs have been

overlooked.

Research into pedestrians’ gaze behaviour can guide the placement and design of AR
interfaces (de Winter et al., 2021; Dey et al., 2019), although most current eye-tracking
research in AV-pedestrian interactions has been focused on eHMIs (Eisma et al., 2020; Guo
et al., 2022; Hochman et al., 2020; Lyu et al., 2024). For instance, Eisma et al. (2020) found
that windscreen-mounted eHMIs effectively focused pedestrian gaze, while road projections
dispersed gaze patterns and increased visual effort, making them less ideal. Also, this study
used a desktop-based 2D simulation setup, which may not have accurately reflected gaze
behaviour in a 3D environment. Using a Wizard-of-Oz study, Dey et al. (2019) observed that

pedestrians’ gaze shifted from the surrounding environment to the car’s bumper and
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gradually to the windshield as the vehicle approached. They recommended distance-
dependent eHMIs considering this visual attention pattern from pedestrians. However, Dey
et al.’s (2019) study involved the use of stationary pedestrians pressing a button to indicate
their crossing intention, rather than making real crossing decisions, possibly limiting insights
into natural behaviour in dynamic environments (Te Velde et al., 2005). Additionally, the
initial head orientation of the pedestrian, which is known to influence gaze patterns
(Tabone et al., 2024), was not controlled. While the above studies suggest that vehicle
distance and display placement affect pedestrian gaze, it remains unclear whether AR
displays are likely to influence gaze patterns in a similar manner, and whether the pattern is
likely to be the same in more dynamic, 3D contexts, when participants’ initial attention
orientation is more systematically controlled. Addressing these gaps could significantly
inform AR placement strategies and potential use cases, as AR can be more versatile in its

location compared to eHMIs, which are typically fixed to the vehicle.

In AV-pedestrian interactions, longer gaze durations on AVs are linked to uncertainty about
the AV’s intentions and increased feelings of danger (Liu et al., 2023). Similarly, longer gaze
duration on eHMI designs indicates lower perceived clarity in communicating AV intent to
pedestrians (Guo et al., 2022). Research suggests that intuitive eHMI designs can reduce
confusion and ease pedestrians’ information load (Moore et al., 2019), with repeated
exposures fostering greater trust, faster crossing decisions, fewer gaze fixations, and
reduced attentional behaviours like head-turning (Faas et al., 2020; Hochman et al., 2020;
Yang et al., 2024). Intuitive AR designs may offer similar benefits, potentially streamlining
decision-making by enabling pedestrians to assess crossing safety more quickly (Tabone et
al., 2024), especially with repeated exposures. This increased efficiency in comprehension
could lead to shorter gaze fixation durations on both AV and AR elements in AR-present
versus no-AR trials, indicating reduced visual demands. However, the correlation between
intuitive design and gaze fixation patterns, particularly with repeated exposures, remains
underexplored. Investigating this relationship could significantly inform AR design for safer

and more efficient AV-pedestrian interactions.

Additionally, if pedestrians’ gaze patterns could be influenced by different AR placements at
different AV distances, one can assume that their crossing decisions could also change

correspondingly, as gaze behaviour often correlates with decision-making in value-based
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choice experiments (Anderson, 2013; Gluth et al., 2018, 2020; Krajbich et al., 2010; Krajbich
& Rangel, 2011; Shimojo et al., 2003; Thomas et al., 2019). Research has shown that
pedestrians presented higher crossing probabilities with the presence of an eHMI
communicating the AV’s intentions at greater AV distances before fully stopping (Dey,
Matviienko, et al., 2020; Lee et al., 2022; Pekkanen et al., 2022; Schneemann & Gohl, 2016).
AR could have a similar effect, potentially leading pedestrians to decide to cross earlier,
while the AV is still at a greater distance. However, the effect of AR placement on both gaze
and the timing of crossing decisions remains unexplored. Investigating this relationship
could provide critical insights into where AR should be positioned to optimise AV-pedestrian

communication at various distances.

In response to these considerations, our study posed the following research questions:

1. How do different AR locations influence pedestrians' gaze patterns as an AV
approaches?

2. How do the location, intuitiveness and repeated encounters of AR influence
pedestrians’ fixation duration during the crossing task?

3. How do different AR locations influence pedestrians' crossing probabilities at various
AV approach distances?

To address these questions, our road crossing study examined pedestrians' gaze behaviour

while exposed to a variety of AR concepts, which were proposed in Tabone et al. (2023) and

Tabone et al. (2024), in a CAVE-based pedestrians simulator environment.

2 Method

2.1 Participants

Thirty participants were recruited for this study through the University of Leeds Driving
Simulator Database, social media and university mailing lists. Among the participants, 20
were males, nine were females, and one was unspecified (age range 22-53 years, M = 31.50,
SD = 7.98). All participants were required to be aged 18 and above, possess proficient
English language skills, and be free from significant mobility limitations, epilepsy,
claustrophobia, or proneness to disorientation. To compensate for taking part in the study
(60-90 minutes), each participant received a £15 Amazon gift voucher. The study received

ethical approval from the University of Leeds Research Ethics Committee (Ref: LLTRAN-150).
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2.2 Apparatus and the virtual environment

The study was conducted in the Highly Immersive Kinematic Experimental Research (HIKER)
simulator, a 9 x 4 m CAVE environment at the University of Leeds (as shown in Figure 1). It
comprised eight 4K projectors and 10 Vicon Vero 2.2 IR cameras, managed via Vicon Tracker
3.9. The experimental virtual environment, designed in Unity, replicated a residential one-
way street featuring a single lane 3.6 meters wide, which was the same as Lee et al. (2022).
Eye-tracking data were captured at a frequency of 50 Hz using the Tobii Pro Glasses 2,

operated and calibrated with Tobii Controller Software.

Figure 1. A participant in the HIKER lab waits for the start of a trial. In the coordinate system, the 'Y' axis aligns with the
participant's height, the 'Z' axis aligns with the pedestrian's intended path, and the 'X' axis aligns with the AV approaching
trajectory. The cyan circle in front is an attention attractor used to control the direction of pedestrians’ initial focus. It
appears randomly, counterbalanced to the left, front, or right of the pedestrian. Pedestrians were required to look at this
area, to trigger the start of each trial.

2.3 Study design

This study builds upon the experiment conducted in Tabone et al. (2024). A within-
participant experimental design was implemented, with participants experiencing 10 blocks
of 12 trials in each block. There were four independent variables: (i) AR designs (nine AR
designs/no AR), (ii) the location of the attention-attractor circle presented before the trial
(left/centre/right), (iii) vehicle yielding behaviour (yielding/non-yielding) and (iv) encounter
of the yielding trials (1st/2nd/3rd),
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Each block featured a single AR condition, covering nine AR designs and one baseline
without AR. The attention attractor circle was used to simulate real-life situations where
pedestrians may be looking in different directions before crossing. Participants were asked
to focus on an attention-attractor circle at the start of the trial (the cyan circle shown in
Figure 1), located on either the left, centre, or right. They were only allowed to look freely
after the circle disappeared. Within each block, participants experienced three trials of
yielding AVs and one trial of a non-yielding AV, all approaching from the right. The order of
blocks was counterbalanced across participants, and the trials within each block were

presented in a randomised order.

The AR designs included in this study are illustrated in Table 1, which was categorised based
on their location: (i) Car Path — Four AR designs which were located in the area of the
approaching AV following its movement, (ii) Crossing Path — Two AV designs which were
located on the crossing path, (iii) Heads-up display (HUD) — Two AR designs which were
constantly located in their visual field regardless of head movements. A ninth design in the
original study (Tabone et al., 2023, 2024) was excluded from the analysis because it featured

a conventional traffic light, which does not fall into either category.

Table 1. Description of AR concepts with categorisations based on their locations

Categor | Design AR concept
y
Car Path Planes on Vehicle

A plane displayed on the vehicle's

windshield area.




Conspicuous Looming Planes

A scalable plane that changed size
according to the yielding state. It

gets smaller in the yielding state.

Field of Safe Travel

A projection on the road in front of
the vehicle indicating a safe travel

area.

Phantom Car

A phantom car was displayed to
show the vehicle’s predicted future

motion.

Crossing

Path

Augmented Zebra Crossing

A zebra crossing was displayed on

the crossing path.

Virtual Fence

Semi-translucent walls around the
zebra crossing with a gate that was

opened during the yielding state.
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HUD Nudge HUD

Text and icons were displayed in the

user’s field of view.

Pedestrian Lights HUD

A traffic light was displayed in the

user’s field of view.

At the start of each trial, participants stood at Point E (Figure 2. ) and fixated on an
attention-attractor circle. After one second, the AV departed from Point A at a constant
speed of 48 km/h (30 mph). Seven seconds later, it reached Point B (43 m from the

participant), triggering the AR interfaces in non-baseline trials.

In yielding trials, the AV began decelerating 0.8 s after Point B (at Point C, 33 m away from
the participant), with a rate of 2.99 m/s?, matching Kaleefathullah et al. (2020). It stopped
four seconds later at Point D (3 m from the participant). The attention-attractor circle
disappeared precisely 0.2 s after deceleration onset (1 s after Point B), and pedestrians were
now allowed to observe the scene and make a crossing decision, as the AV reached 30

meters away.

In non-yielding trials, the attention-attractor circle also disappeared 1 s after Point B, but

the AV continued at constant speed.

10
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Figure 2. A bird's-eye view of the virtual road layout. Point A marks the starting position of the AV. Point B denotes the
activation of the AR interfaces in non-baseline trials. Points C and D represent the onset of deceleration and the stopping
point of the AV, respectively, during yielding trials. Point E shows the initial standing position of pedestrians at the
beginning of each trial.

2.4 Procedure

Upon arrival at the lab, participants were provided with an information sheet detailing the
study and were given a consent form to sign after their queries were addressed. They then
completed questionnaires to provide information such as demographics, nationality, and

experience with AR/VR, with details reported in Tabone et al. (2024).

Before starting the trials, the eye-tracker was calibrated. Pedestrians were instructed to
stand on a blue marker at the beginning of each trial. Once positioned, they initiated the
trial by focusing on a stationary, cyan-coloured circle. A continuous one-second gaze on this
attention-attracting circle was required to start the trial. If participants' attention deviated,
an automatic beeping sound reminded them to refocus on the circle. Successful adherence
to this instruction triggered the start of the trial, with the AV entering the simulation from a
concealed position. Participants' primary task was to safely cross the virtual road from one
curb to another when they felt safe. After providing their answer to the perceived

intuitiveness verbally, participants returned to the starting point to begin the next trial.

Two practice trials were conducted before the main experiment: one with a non-yielding
vehicle and another with a yielding vehicle. The study began after participants confirmed

their understanding of the environment and the task and provided consent to take part.

11
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To measure participants’ perceived intuitiveness of the AR, they rated their agreement with
the statement: “The interface was intuitive for signalling: ‘Please cross the road’” on a scale

from 1 (Strongly disagree) to 7 (Strongly agree) after each trial.

Upon completion, participants were thanked for their involvement and received

compensation for their time.

2.5 Data analysis

In the current study, non-yielding trials were excluded from further analysis because
pedestrians did not initiate crossings in these scenarios, and no learning could be assessed
with only a single repetition of non-yielding AVs. As a result, this study analysed 81 trials per
participant, covering nine AR conditions (three location-based groups covering eight AR
designs plus one baseline), with each condition further subdivided by three initial attention
directions and three yielding AVs, totalling 2430 trials. The order of each yielding AV within
the initial attention directions and within each AR condition was also labelled as the

1st/2nd/3rd encounter to analyse behaviour changes with repeated exposures.

In this study, the positions of vehicles and pedestrians were consistently logged at a
frequency of 120 Hz and pedestrians’ gaze data were recorded at 50 Hz. Raw gaze data were
selected for analysis from the moment the attention-attractor circle disappeared until either
the pedestrian initiated a crossing, or the AV passed, for trials where pedestrians chose not

to cross. This period captured the interaction phase between the pedestrian and the AV.

Gaze data were collected using a Tobii Glasses 2 (firmware 1.25.6-citronkola-0; head unit
0.062) mobile eye-tracker, which was operated and calibrated using the Tobii Controller
Software v.1.114.20033, with thorough calibration procedures conducted before data
collection to ensure accuracy and precision. However, factors such as frequent blinking or
missing data could reduce the gaze sample rate. To ensure the quality of gaze data analysis,
we identified gaps in the recorded eye-movement data, considering any gap longer than 400
milliseconds as missing data rather than a short interruption like blinking, whi. Trials with
more than 30% missing data were excluded, as well as data from Participants 6, 17, and 18,
where over 30% of their trials contained more than 30% missing data, resulting in the

exclusion of 396 trials (Bindschadel et al., 2022). After further exclusion of 51 trials, where

12
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pedestrians did not cross, the final analysis included data from 1983 trials, comprising 1768

AR-present trials and 215 no-AR (Baseline) trials.

2.5.1 Pedestrian gaze patterns

To analyse pedestrians’ gaze behaviour during interactions with AVs in a 3D environment,
we visualised heat maps of their gaze points on the Y-Z plane (horizontal and vertical visual
axes, see coordinate system in Figure 1) as the AV approached at different Distance Intervals
along the X-axis. This analysis was conducted in a world-referenced coordinate system,
assuming gaze positions projected onto a plane perpendicular to the AV’s travel direction.
Grouping gaze data into intervals, rather than using raw continuous distance, ensures
sufficient data points per interval for meaningful visualisation, reducing noise and creating
smoother and more interpretable gaze heat maps. This method also highlighted distance-
specific shifts in gaze behaviour, making it easier to track attention changes as the AV

approached.

Once the attention attractor disappeared, allowing pedestrians to observe the situation and
begin their interaction with the AV at a distance of 30 meters, gaze data were grouped into
10-meter Distance Intervals for the remaining approach time, with intervals defined as 30—
20 m, 20—-10 m, and 10—0 m meters away from the pedestrians. These intervals were chosen
based on findings from Dey et al. (2019), which suggests significant changes in pedestrians'
gaze patterns every 10 meters as a vehicle approaches. Starting the interaction at 30
meters, with a time gap of less than 3 seconds between the pedestrian and the AV, has been
shown in previous research to be a situation of higher uncertainty (Tian et al., 2023),
necessitating explicit communication mechanisms for right-of-way decisions to ensure safe

and smooth interactions.

For each Distance Interval, the coordinates of pedestrians’ gaze points were visualized on
the Y-Z plane, and heat maps were created using Kernel Density Estimation (KDE), a
statistical method that smooths data points to produce a continuous density surface. The
resulting heat map uses a colour gradient from blue (lower density) to red (higher density)
to illustrate how heavily pedestrians scanned the environment, elements of the AV or AR, at
different distances as the AV approached. All data processing and visualization were

conducted using Python 3.

13
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2.5.2 Change in Fixation Duration (AFD)

Longer gaze fixations are associated with higher visual effort and greater difficulty in
processing the visual information (He & McCarley, 2010; Herten et al., 2017; Jacob & Karn,
2003; Kotval & Goldberg, 1998; Milton et al., 1950). To investigate how AR would influence
pedestrians’ visual load, we analysed their gaze fixations on specific areas of interest (AOls)
by tracking the gaze location frame by frame, starting from when the attention-attractor

circle disappeared until the pedestrian initiated crossing.

The AOQIs investigated in this study were: (1) Car body: The AOI for the car body was defined
by its moving 3D spatial boundaries, with the car’s centre position (XYZ coordinates) and its
dimensions (length, width, and height) being updated for each frame. (2) AR interface: The
AOI for the AR interface was represented by a moving plane in the 3D environment, with its
centre position and size defined in the virtual space each frame. Gaze points that did not fall

within either of these two AOIs were classified as falling into the "other" AOI.

Following the instructions from the Tobii White Paper (Olsen, 2012), raw gaze data were
first linearly interpolated for gaps shorter than 75 milliseconds to handle data quality issues
and then filtered using a 3-sample moving median filter to smooth high-frequency noise.
Fixations were subsequently detected using the I-VT (ldentification by Velocity Threshold)
algorithm, with a velocity threshold of 100°/s and a minimum fixation duration of 100
milliseconds. Although typical fixation durations can range from 50 to 500 milliseconds,
depending on the task (Negi & Mitra, 2020; Rayner, 2009). We adopted the 100 milliseconds
threshold in line with established standards (Salvucci & Goldberg, 2000). Adjacent fixations
within 0.5° and separated by gaps shorter than 75 milliseconds were merged into a single
fixation to account for brief interruptions. The total fixation duration for both the car and AR
AOIls was calculated during AR-present trials, and solely on the car during no-AR baseline

trials for further analysis.

To assess the impact of AR on pedestrian visual load, we introduced the “Change in Fixation
Duration (AFD)” metric. We first established each participant’s baseline by averaging their
total fixation duration on the vehicle in no AR trials, representing visual load without AR. In

each AR present trial, we then establish the total fixation duration on both the AR interface

14
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and the vehicle. Summing the two AQOIs overcame the challenge where, in some AR
conditions (e.g., HUDs, Virtual Fence, Car Path), the AR overlapped with the vehicle, making
gaze indistinguishable, while in others (e.g., Crossing Path), it competed for attention
without overlapping. AFD was calculated by subtracting each corresponding participant's
baseline fixation time from the total fixation duration on both the AR interface and the
vehicle. This metric ensures that AFD consistently reflects and quantifies additional
attention required by the AR, accounting for individual differences in visual load, and
addresses the challenge of distinguishing gaze focus between AR interfaces and the vehicle.
A positive AFD indicated an increased visual load, while a negative AFD suggested a reduced

visual load, compared to baseline, during crossing decisions.

To answer the second research question, we conducted a Generalised Linear Mixed Model
(GLMM) considering repeated measures analysis (Stroup, 2012) on AFD. The model applied
a linear distribution with an identity link function and included the following variables: (1)
AR Location (Car Path, Crossing Path, or HUD), (2) Intuitiveness Rating (post-trial scores
verbally provided by pedestrians), and (3) Encounter (number of interactions within each
condition: 1st/2nd/3rd),

2.5.3 Crossing probabilities

A GLMM was conducted to analyse the likelihood of pedestrians deciding to cross when the
AV was at different Distance Interval (30—20 m, 20—10 m, and 10—0 m), due to the time
sequential nature of these distance intervals (Stroup, 2012). The analysis involved a binary
logistic regression with a logit link function, including the main effect of Distance Interval
and its interaction with AR Location (Baseline/ Car Path/ HUD/ Crossing Path) to investigate
how pedestrians' crossing probabilities at various AV approach distances are influenced by

different AR placements

In this paper, all GLMM analyses included participant as a random effect to account for
individual differences, with Bonferroni-adjusted pairwise comparisons for post-hoc analyses.

The analysis was conducted using SPSS 28, with a significance level set at p < .05.
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3 Results

3.1 Gaze heat map

In the Baseline condition without AR, Figure 3 from the left to right shows pedestrians’ gaze
heat map as the AV approached. When the AV was 30-20 meters away, pedestrians’ gaze
was more on the environment in front of them (the blob in the left top in the first figure) or
on the ground. When the vehicle was closer to 20-10 meters, pedestrians increasingly
focused on the car itself. Finally, when the AV was within 10 meters, their gaze concentrated
predominantly on the AV, particularly on the windscreen. This gaze pattern, where
pedestrians’ attention shifted from the environment to the car and driver’s seat as the AV
approached, was also observed with different AR placements (Figure 4,Figure 5,Figure 6),

with slight variations depending on the design.

25 Car_x(m): -30 to -20 Car_x(m): -20 to -10 Car_x(m):-10to 0

0.7640
2.04
0.5288
0.4311
154
0.4020

0.3497

Gaze Density

1.04
0.2755

Gaze Point Y (m)

0.2039

0.51
0.1359

0.0746

0.0 - -

— 0.0000

-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4
Gaze Point Z (m)

Figure 3. In Baseline trials with no AR concepts, from left to right are pedestrians’ gaze heat map on Y-Z plane when the
AV’s distance to pedestrians (Car_x) was -30 to -20, -20 to -10, and -10 to 0, metres, smoothing using KDE.

With AR on the Car Path (Figure 4a-d), pedestrians’ gaze patterns generally resembled the
Baseline (Figure 3) when the AV was 30-20 meters, focusing mainly on the environment.
However, when a Phantom Car (an AR-generated duplicate of the vehicle indicating its
predicted future motion) appeared (Figure 4d), their gaze shifted more towards the
vehicle’s position in the Y-Z plane (likely focusing on the approaching Phantom Car) between
30 and 20 meters, before concentrating on the windscreen as the AV approached within 20

meters.

In contrast, the other ARs on the Car Path (Figure 4a-c) notably altered gaze behaviour as
the AV moved closer, especially between 20-10 meters. Compared to the Baseline (Figure 3,

pedestrians focused more on the car and windscreen when the AR was projected onto the
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windscreen, such as Planes on Vehicle (Figure 4a) and Conspicuous Looming Planes (Figure
4b), with less attention paid to the grill area as the AV was nearly 10 meters away. When AR
was projected onto the road, as with the Field of Safe Travel (Figure 4c), pedestrians'
attention shifted towards the road between 20-10 meters but became more dispersed

across the vehicle and the ground as the AV closed within 10 meters.

25 Car_x(m): 30-20 Car_x(m): 20-10 Car_x(m): 10-0
a l»nsnu
2.0 ( )
05150
- 0.4576
Eis >
Pt 0.4097 2
= s § ~ ]
£ !
5 1 \ aaaaaé
210 @2 24 . e H
@ 02547 §
| N
S i
© = - = 0.1883
= ==
3 -5
05 - = N 01270
- - 0.0702
00 - -
. 0.0000
2.5
(b) F 1470
2.0
1.227
—- 0.975
g E1s
> - N . 0801 >
£ y - - 3 0636 &
] § o, o
210 ? H
] 04523
o
[ » = 0.303
0.5 =
0.185
— 0.084
00 - -
L o.000
25 ‘
(c) H 0.5078
20
0.4196
- 0.3682
E
> 15 03218 2
- = - g
] 5
5 - 0.2866 §
210 ! LN/ g
g 02482 3
] .
© = T 0.2058
05 —— .
- \\ s *'— 0.1442
- S8
‘ e ™ 1 0.0735
0.0 =
L 0.0000
25
(d) R..
2.0
0.890
- 0.657
E
o _R - 0480 =
u r g
£ . r. . i 03128
I i 4
@ 0.289 3
5 |
3 |
9 0211
0.5
0143
0.082
0.0
— 0.000

-2 -1 [ 1 2 3 4 -2 -1 1 2 3 4 -2 -1 0 1 2 3 4

[
Gaze Point Z (m)

Figure 4. In AR on Car Path, pedestrians’ gaze heat maps for designs: (a) Planes on Vehicle, (b) Conspicuous Looming Planes,
(c) Field of Safe Travel, and (d) Phantom Car.

In HUD conditions (Figure 5a and b), when the AV was 30-20 and 20-10 meters away,
pedestrians focused less on the environment than in Baseline trials, concentrating instead

on two areas: the HUD AR and another area likely on the car. As the AV came within 10
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meters, their gaze on the windscreen became more dispersed, but there was less focus on

the grill compared to the Baseline (Figure 3).
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Figure 5. In AR HUD trials, pedestrians’ gaze heat maps for designs: (a) Nudge HUD, and (b) Pedestrian Lights HUD.

Car_x(m): 30-20

Car_x{m): 20-10

Car_x(m): 10-0

(a)

b‘hg

(b)

0 2
Gaze Point Z (m)

Huans

05261
0.4320
03349 2
€
0.2402 &
8
0.1806 §
0.1192
0.0722
0.0456

0.0000

0.5665
0.4602
03930
03332 %
02610 &
]
01836 3§
01153
00718
0.0423

0.0000

Regarding AR on Crossing Path (Figure 6a and b), with an Augmented Zebra Crossing (Figure

6a), pedestrians focused more on the ground and less on the car when the AV was beyond

10 meters (30-20 and 20-10), but their gaze became more dispersed across the vehicle and

towards the ground as the AV approached within 10 meters, compared to Baseline (Figure

3). With a Virtual Fence added (Figure 6b), pedestrians’ gaze remained concentrated on the

fence's edge, regardless of the AV's distance.
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Figure 6. In AR Crossing Path trials, pedestrians’ gaze heat maps for designs: (a) Augmented Zebra Crossing, and (b) Virtual
Fence.

3.2 Change in Fixation Duration (AFD)

A GLMM analysis was conducted to investigate the effects of AR Location (Car Path, Crossing
Path, or HUD), Intuitiveness Rating and Encounter on pedestrians’ Change in Fixation
Duration, with participant included as a random effect. The model revealed significant main
effects of Intuitiveness Rating, F (6, 1757) = 21.23, p <.001, Encounter, F (2, 1757) =8.29, p
<.001, and AR Location, F (2,1757) = 22.74, p < .001.

For Intuitiveness Rating, estimated marginal means showed that AFD became progressively
more negative as ratings increased (from M =0.13, SE = 0.17 at Rating 1 to M =-0.66, SE =
0.09 at Rating 7), as shown in Figure 7. Sequential Bonferroni-adjusted pairwise
comparisons indicated that the most negative AFD occurred at Rating 7, which differed
significantly from all lower ratings (all ps <.001). Rating 6 (M =—0.61, SE = 0.09) was also
significantly more negative than Ratings 5 (p =.018), 4, 3, 2, and 1 (all ps <.001). Rating 5 (M
=-0.51, SE = 0.10) was more negative than Ratings 4 (p =.038), 3, 2, and 1 (all ps < .001).
Rating 4 (M =-0.40, SE = 0.11) was more negative than Ratings 3 (p =.046), 2, and 1 (both
ps < .001). Finally, Rating 3 (M =—0.25, SE = 0.12) was more negative than Rating 1 (p
=.004), and Rating 2 (M =—0.09, SE = 0.13) was also more negative than Rating 1 (p = .007).
These results suggest that higher perceived intuitiveness of AR interfaces was associated

with a greater reduction in visual load compared to baseline.
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Figure 7. The bar plots and error bars (SE, standard errors, between-subjects) for the impact of Intuitiveness Rating of AR on
the Change in Fixation Duration Time.

Car Path showed the least negative AFD (M =-0.14, SE = 0.09), significantly less than both
HUD (M =-0.33, SE = 0.09; p <.001) and Crossing Path (M =—-0.32, SE = 0.09; p <.001),
which did not differ from each other (p = .804). Thus, HUD and Crossing Path reduced visual

load more than the Car Path interfaces.

For Encounter, AFD was least negative at the 1st encounter (M =—-0.18, SE = 0.09) and
became significantly more negative by the 2nd (M =—-0.32, SE = 0.09; p < .001) and 3rd
encounters (M =-0.30, SE = 0.09; p =.002). The 2nd and 3rd encounters did not significantly
differ (p = .515). This indicates that repeated exposure reduced visual load during later

encounters with AR.
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Figure 8. The bar plots and error bars (SE, standard errors, between-subjects) for the impact of AR Location, and the number
of Encounter, on the Change in Fixation Duration Time.

3.3 Crossing probability at different AV approach distances

A GLMM was conducted to analyse the likelihood of pedestrians deciding to cross when the

AV was at different Distance Interval and its interaction with AR Location.

The analysis revealed significant effects of Distance Interval of AV (F (2,5937) = 237.630,
p<.001) and interaction with AR Location (F (9, 5937) = 51.553, p <.001) on the probability

of crossing.

As shown in Error! Reference source not found.a, compared when AV was 30-20 meters

away (M = 0.094, SE = 0.012), the likelihood of pedestrians crossing significantly increased as
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the vehicle approached closer to 20-10 meters (M = 0.233, SE = 0.014, p <.001) and 10-0

meters (M = 0.643, SE = 0.016, p < .001). Post hoc analysis using LSD showed that crossing

probabilities significantly increased as the AV approached closer, from 20-10 meters to 10-0

meters (p <.001). However, further post hoc analysis of the interaction effect revealed that

this increasing tendency was significant only in the Baseline and AR Car Path conditions. In

contrast, crossing probabilities did not differ significantly between the Distance Interval of

20-10 meters and 10-0 meters in both the AR Crossing Path and HUD conditions (both

p > .05).
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Figure 9.(a) Results from GLMM showing bar plot of pedestrians' crossing decision probabilities across different Distance
Interval of AV, clustered by the AR Location. Error bar stands for the standard error. (b) Density plots of crossing
probabilities using KDE, depicting their relationship to AV distance in each AR design. The colour scheme matches that of

panel (a): blue for Baseline, orange for AR Car Path, green for AR HUD, and red for AR Crossing Path, regarding the AR
Location.

When the AV was at both 30-20 and 20-10 meters, the Baseline condition showed
significantly lower crossing probabilities compared to the AR Car Path condition (M = 0.019,
SE =0.009 vs. M = 0.072, SE = 0.009; M = 0.070, SE =0.017 vs. M = 0.214, SE = 0.014; both p
<.001). Additionally, the crossing probabilities in both the Baseline and AR Car Path
conditions were significantly lower than those in the AR Crossing Path condition (M =0.197,
SE =0.019; M = 0.415, SE = 0.023; both p <.001) and the AR HUD condition (M = 0.242, SE =
0.020; M =0.369, SE = 0.023; both p <.001). The differences between AR Crossing Path and

AR HUD were not significant in these two intervals (both p > .05).

When the AV was within 10 meters away, the Baseline condition showed significantly higher
crossing probabilities (M =0.912, SE = 0.019) compared to the AR Car Path condition (M =
0.715, SE = 0.015, p < .001). Both conditions had significantly higher crossing probabilities
than the AR Crossing Path condition (M = 0.388, SE = 0.023, both p <.001), and the AR HUD
condition (M = 0.389, SE = 0.023, both p <.001), with no significant difference between AR
Crossing Path and AR HUD (p > .05).
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4 Discussion

This study used a CAVE-based virtual reality pedestrian simulator to investigate pedestrians’
gaze patterns and crossing probabilities across different AV approach distances and AR
placements. Additionally, this study examined how pedestrians’ visual load can be reduced

by AR, considering different placements, levels of intuitiveness, and repeated exposures.

Results showed that AR facilitated pedestrians’ understanding of the vehicle’s intent, as
indicated by increased crossing probabilities before the vehicle fully stopped, regardless of
AR placement (Figure 9a and b). A bimodal distribution of crossing decisions was observed
in previous studies (Dey, Matviienko, et al., 2020; Lee et al., 2022; Pekkanen et al., 2022;
Schneemann & Gohl, 2016), where pedestrians were more likely to cross either when the
vehicle completed a full stop or at a very far distance. However, this study used a time gap
of less than 3 seconds, a kinematic situation characterised by higher uncertainty and more
varied interaction patterns (Tian et al., 2023), and pedestrians are more likely to cross when
the AV comes to a full stop, which was also observed in baseline trials. However, in such
short time gaps, we also identified a bimodal distribution of crossing decisions with AR
presence (Figure 9a and b). Similar to the effectiveness of eHMI (Dey, Matviienko, et al.,
2020; Lee et al., 2022; Madigan et al., 2023), AR enabled pedestrians to interpret the
vehicle’s intent earlier, promoting crossing before the vehicle fully stopped. Among the
different AR placements, AR on the Crossing Path and HUD showed more effective than Car
Path at greater distances, likely due to their higher visibility when the AV was further, which
is known to enhance the effectiveness of eHMls in influencing crossing decisions at various

AV approach distances (Dey, Habibovic, et al., 2020; Lee et al., 2022).

Gaze heat maps (Figure 3, Figure 4, Figure 5, Figure 6) revealed a distinct pattern as the
vehicle approached, consistent with eye-tracking studies involving manually driven vehicles
(de Winter et al., 2021; Dey et al., 2019). When the vehicle was distant, pedestrians
primarily scanned the environment or focused on the crossing path or road surface ahead of
the vehicle. This behaviour likely occurred because a distant car poses no immediate threat.
However, when an immediate threat appeared, such as a fast-approaching phantom car

ahead of the AV, pedestrians’ attention was captured immediately (Figure 4d). As the AV
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drew closer, their gaze shifted noticeably from the road to the main body of the vehicle, and

eventually to the windshield.

Interestingly, even in the absence of drivers in AVs, pedestrians continued to focus on the
windshield, possibly trying to gather information or establish eye contact (Onkhar et al.,
2022). A concentrated gaze density was observed on the left seat, which, given that the
driver’s seat is on the right in the UK, could be attributed to the looming effect (Tian et al.,
2022), making the left seat appear closer to pedestrians to be focused on. This suggests that
pedestrians' gaze patterns may differ in situations with a driver present, different driving
directions, and left-hand or right-hand drive, as well as the road segments and real-world

conditions. These dynamics and complexities warrant further investigation.

Additionally, pedestrians' gaze patterns were significantly altered in AR Crossing Path
(Figure 6) and HUD (Figure 5) trials compared to Baseline (Figure 3) when the AV was 30 to
20 meters away. In contrast, significant changes in pedestrians’ gaze patterns in Car Path
(Figure 4) trials were observed when the AV was within 20 meters. This finding highlights
AR's potential advantage in AV-pedestrian communication, offering greater versatility in its
location and visibility than eHMI attached to or projected from the AV. AR on Crossing Path
and HUD are particularly useful when the AV is further away, while AR on Car Path is more

effective when the AV is closer.

In this study, AR HUD facilitated earlier crossing decisions (Figure 9) and led to the greatest
decrease in fixation duration compared to baseline (Figure 8), aligning with Tabone et al.
(2023) findings, where a HUD display was preferred over cues projected on the road or on
the approaching vehicle. However, the HUD seemed to distract pedestrians when the AV
was more than 10 meters away, as they looked aside to avoid it (Figure 5). Peereboom et al.
(2024) found similar results, where HUD received lower ratings and was less preferred
compared to baseline, potentially causing discomfort, especially at close distances. In this
study, HUD was most effective in influencing crossing decisions when the AV was 30 to 20
meters away, suggesting that such AR is most appropriate for situations involving distant

AVs.
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Previous research suggested that embedding AR in the environment could divide
pedestrians’ attention from the oncoming vehicle to the road instead (Peereboom et al.,
2024; Tabone et al., 2023). However, this study showed that this was not the case when the
AV was farther away. Even with an Augmented Zebra Crossing on the Crossing Path (Figure
6a), pedestrians’ attention pattern did not change much compared to Baseline (Figure 3)
when the AV was 30 to 10 meters away, as they were not focused on the vehicle during this
phase. On the other hand, Virtual Fence led to a more concentrated gaze patterns from
pedestrians (Figure 6b). This suggests that AR on the Crossing Path may be best used when

the AV is farther away to avoid distracted attention as it approaches.

Some research has highlighted that visually demanding tasks and distractions pose
significant risks to pedestrians (Tapiro et al., 2020), suggesting that adding external
interfaces could exacerbate these issues, especially when pedestrians rely primarily on
kinematic cues from vehicles to make crossing decisions (de Winter & Dodou, 2022; Li et al.,
2018). However, our findings reveal that the presence of AR concepts did not increase

the fixation duration and visual demands in AV-pedestrian communication, even with the
introduction of additional external messages, provided these are intuitively designed (Figure
7). As illustrated in Figure 7, the AFD was negative when the AR concept was perceived as
intuitive, indicating a reduction in visual load compared to the baseline scenario with no
external messages. However, a poorly designed AR interface can impose additional
visual effort, potentially undermining pedestrian safety, whereas intuitive designs
reduce processing demands and support safer crossing behaviour. This aligns with
recommendations from other eHMI studies advocating for messages that are both intuitive
and familiar to pedestrians (de Clercq et al., 2019; Hensch et al., 2019; Lee et al., 2022). This
result demonstrates the potential benefits of integrating AR in AV-pedestrian
communication and underscores the importance of creating clear and intuitive interfaces
for safe and efficient pedestrian engagements. However, this research only involves simple
one-to-one interactions, leaving uncertainty about how the presence of multiple vehicles
might impact visual load for some designs, particularly those associated with the AV (Car
Path). For instance, with multiple AVs, each vehicle could project different information,
potentially overwhelming pedestrians with competing signals. In contrast, HUD and Crossing

Path designs are intended to provide consistent, situationally aware guidance that doesn’t
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change with each individual vehicle. This discrepancy in AR concepts could have a significant
effect on visual load, especially as pedestrians attempt to process information from multiple

sources simultaneously.

Moreover, repeated exposure to AR interfaces significantly enhanced their effectiveness,
supporting the notion of a positive learning curve in AR adoption across all three placements
(Figure 8). As participants became more familiar with the interfaces, their AFD decreased,
suggesting that regular interaction with AR could boost pedestrian confidence and safety
over time, even after just one exposure. This observation is consistent with studies
indicating that pedestrians can quickly adapt to novel types of eHMlIs after several
encounters (de Clercq et al., 2019; Eisele & Petzoldt, 2022; Lee et al., 2022; Yang et al.,
2024).

While our findings indicate that intuitive AR can reduce visual load (negative AFD) and
promote earlier crossing decisions, these benefits also raise concerns about potential over-
reliance. Prior work has shown that pedestrians sometimes prioritise external messages
over vehicle kinematics, stepping into the road even when signals are misleading or
incongruent with motion cues (Hollander et al., 2019; Kaleefathullah et al., 2020). Repeated
exposure may further reinforce this dependency, as pedestrians adapt to AR cues and
reduce head checks or monitoring of the vehicle (Yang et al., 2024). Such over-trust could
undermine safety in real traffic, especially in multi-vehicle contexts where competing or
inconsistent AR projections may overwhelm attention. To mitigate these risks, AR should
complement rather than substitute kinematic information, with intuitive interfaces designed
to support safety crossing decisions. This aspect warrants further investigation to ensure the

safe application of AR technologies in pedestrian environments.

5 Limitations and Future Work

While this study offers insights for designing AR interfaces in AV-pedestrian communication,
it also has limitations that suggest areas for future research. First of all, while ARs have the
advantage of communicating with multiple road users over eHMIs, this research only
investigates one pedestrian interaction with one AV at a time. Future research could explore

AR's role in more complex interactions.
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The experimental context was simplified, focusing on an open, straight road and future
research can be built on a complex traffic scenario such as intersections or roundabouts, as
well as different road infrastructure such as zebra crossings (Madigan et al., 2023; Yang et
al., 2024). Additionally, further research can extend this study under different kinematic
situations with different driving behaviours and time gaps, which may identify a different
role of explicit communication in varying implicit conditions (Dey, Matviienko, et al., 2020;
Lee et al., 2022; Madigan et al., 2023). Furthermore, the homogeneity of participant
demographics, such as age and gender, which are known to influence attention allocation
(Tapiro et al., 2016), can be further explored to propose more personalised AR. Future
research should aim to test these AR interfaces in more varied and dynamic outdoor
scenarios to validate their effectiveness across different pedestrian populations and urban

settings.
6 Conclusion

This study showcases the promising role of AR in enhancing pedestrian safety and decision-
making in AV contexts, emphasizing the importance of intuitive, familiar, and repeatedly
exposed AR interfaces in reducing visual load. The study also indicates that AR can be more
useful when the AV is farther away and there is more uncertainty about its intents.
However, it is still crucial to continue refining these technologies through real-world testing
and broader user engagement to ensure that they meet the varied needs of all pedestrians

in increasingly automated urban environments.
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