

1 The effect of Augmented Reality on
2 Pedestrians' Gaze Patterns and Crossing
3 Probability while Interacting with
4 Automated Vehicles.

5

6 Authors

7 Yue Yang^{1*}, Yee Mun Lee¹, Wilbert Tabone², Jorge García de Pedro¹, Riender Happee², Joost
8 de Winter², Natasha Merat¹

9 **Affiliations**

10 ¹ Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom

11 ² Department of Cognitive Robotics, Delft University of Technology, 2628 CD Delft, The
12 Netherlands

13 **Corresponding author**

14 *Yue Yang, Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United
15 Kingdom. Email: y.yang2@leeds.ac.uk

16 **Email addresses**

17 Yue Yang — y.yang2@leeds.ac.uk

18 Yee Mun Lee — y.m.lee@leeds.ac.uk

19 Wilbert Tabone — w.tabone@tudelft.nl

20 Jorge García de Pedro — j.garcia1@leeds.ac.uk

21 Riender Happee — r.happee@tudelft.nl

22 Joost de Winter — j.c.f.dewinter@tudelft.nl

23 Natasha Merat — n.merat@its.leeds.ac.uk

24 **Abstract**

25 The study of Augmented Reality (AR) in transportation has been growing rapidly, and it
26 could be used in communicating the intention of an approaching automated vehicle (AV) to
27 pedestrians. However, it remains unclear whether the adoption of AR increases pedestrians'
28 visual load. This study examined pedestrians' gaze behaviour and crossing decisions when
29 exposed to AR interfaces positioned as a heads-up display (HUD), at the crossing path, or
30 along the AV's travel path. Thirty participants completed trials in a CAVE-based virtual
31 reality (VR) pedestrian lab. We analysed gaze fixations on the vehicle and AR interfaces
32 during the period leading up to crossing initiations. Results showed that, compared to
33 baseline conditions without AR, AR conditions were associated with reduced visual load,
34 indicating that AR did not overburden attention. Interfaces rated as more intuitive and
35 repeated exposures enhanced this effect, though these patterns may also indicate
36 overreliance. Among the different placements, a HUD yielded the greatest decrease in visual
37 load, followed by AR on the crossing path, and then AR along the vehicle's path. Gaze heat
38 maps showed that pedestrians increasingly focused their attention on the vehicle as it
39 approached, regardless of AR locations. Crossing probabilities revealed that in baseline
40 conditions, pedestrians were most likely to cross when the AV was closest and stopped,
41 whereas with AR present, crossings were more likely at greater distances, reflecting earlier
42 recognition of intent. Overall, these findings suggest that AR, if intuitively designed, does
43 not visually overload pedestrians and can support safer crossing decisions, although the
44 potential for overreliance requires further study.

45 **Keywords:** Augmented Reality; Automated Vehicles; Pedestrian Safety; Gaze Behaviour;
46 Visual Load; Crossing Decisions

47 [1 Introduction](#)

48 The introduction of automated vehicles (AVs) leads to a significant transition in
49 transportation, promising many benefits, including a major reduction in accidents involving
50 vulnerable road users by eliminating human errors (Anderson et al., 2016). However, higher-
51 level AVs, which operate without human drivers, are currently unable to effectively
52 communicate their own intentions to surrounding traffic. This limitation can lead to
53 frustrating standoffs, particularly in ambiguous situations where both the AV and other road
54 users are trying to occupy the same space but are uncertain about who has the right of way,
55 such as at unsignalized crossings (Brown et al., 2023; Loke, 2019; Rasouli et al., 2018;
56 Vinkhuyzen & Cefkin, 2016). The absence of a human driver or traffic signals at these
57 crossings prevents clear communication, further complicating the determination of priority
58 and increasing the likelihood of hesitation or hazardous interactions.

59 External Human-Machine Interfaces (eHMIs) have been proposed as a solution for bridging
60 this communication gap by externally displaying information about AV intentions to
61 pedestrians (Faas et al., 2020; Guo et al., 2022; Hochman et al., 2020; Holländer et al., 2019;
62 Lee et al., 2022; Lyu et al., 2024; Wilbrink et al., 2021). Although eHMIs can help pedestrians
63 make quicker decisions and increase their perceived safety (Faas et al., 2020; Holländer et
64 al., 2019), they face challenges in scalability, particularly for managing multiple interactions
65 simultaneously and effectively communicating across various distances and directions
66 (Colley et al., 2020; Dey et al., 2021; Holländer et al., 2022; Lyu et al., 2024; Wilbrink et al.,
67 2021). These challenges raise concerns about how an AV communicates with specific
68 pedestrians among many road users and the visibility of eHMIs in complex, real-world traffic
69 scenarios (Dey, Habibovic, et al., 2020).

70 Given these challenges, personalized interaction strategies like Augmented Reality (AR) are
71 being explored as a complementary approach in assisting with communication for
72 pedestrian-AV interactions (Calvi et al., 2020; Matvienko et al., 2022; Tabone et al., 2020,
73 2021, 2023; Tran et al., 2023). AR allows for simultaneous communication with multiple
74 road users, providing precise, customized visual information to pedestrians (Dey, Habibovic,
75 et al., 2020). By overlaying digital content onto the physical world, this approach offers
76 several benefits, such as resolving language barriers through person-specific feedback

77 (Tabone et al., 2020), and maintaining users' situational awareness (Tong et al., 2021).
78 Although the use of AR for road user communication may seem futuristic and raise concerns
79 about reliance on costly headsets (Tabone et al., 2020), advancements in wearable AR
80 technology (e.g., Microsoft HoloLens, Google Glass, Apple Vision Pro) are making its
81 adoption in AV-pedestrian communication increasingly feasible.

82 Despite these potential benefits, there are concerns that AR might overly burden
83 pedestrians with additional visual elements (Tabone et al., 2020). Research in learning and
84 skill acquisition domains has shown that while mobile AR can decrease cognitive load by
85 providing direct information, it can also overwhelm users when presenting excessive
86 information simultaneously (see reviews from Buchner et al., 2022; Suzuki et al., 2024). In
87 road user interactions, pedestrians may experience cognitive and information overload with
88 too many visual cues, posing safety risks (Mahadevan et al., 2018; Moore et al., 2019). Eye-
89 tracking offers a method to measure pedestrians' visual attention, helping to assess whether
90 they are visually overloaded by these cues. Additionally, research examining gaze fixations,
91 defined as periods when the eyes remain relatively still and focus on a specific element,
92 helps gain deeper insights into how pedestrians engage with visual information (Salvucci &
93 Goldberg, 2000). Longer fixation durations may indicate increased visual effort (He &
94 McCarley, 2010; Herten et al., 2017; Jacob & Karn, 2003) or difficulty in processing the visual
95 information (Kotval & Goldberg, 1998; Milton et al., 1950), while shorter fixations suggest
96 quicker information absorption. However, investigations assessing pedestrians' gaze
97 behaviour when exposed to AR interfaces signalling the intentions of AVs have been
98 overlooked.

99 Research into pedestrians' gaze behaviour can guide the placement and design of AR
100 interfaces (de Winter et al., 2021; Dey et al., 2019), although most current eye-tracking
101 research in AV-pedestrian interactions has been focused on eHMIs (Eisma et al., 2020; Guo
102 et al., 2022; Hochman et al., 2020; Lyu et al., 2024). For instance, Eisma et al. (2020) found
103 that windscreen-mounted eHMIs effectively focused pedestrian gaze, while road projections
104 dispersed gaze patterns and increased visual effort, making them less ideal. Also, this study
105 used a desktop-based 2D simulation setup, which may not have accurately reflected gaze
106 behaviour in a 3D environment. Using a Wizard-of-Oz study, Dey et al. (2019) observed that
107 pedestrians' gaze shifted from the surrounding environment to the car's bumper and

108 gradually to the windshield as the vehicle approached. They recommended distance-
109 dependent eHMIs considering this visual attention pattern from pedestrians. However, Dey
110 et al.'s (2019) study involved the use of stationary pedestrians pressing a button to indicate
111 their crossing intention, rather than making real crossing decisions, possibly limiting insights
112 into natural behaviour in dynamic environments (Te Velde et al., 2005). Additionally, the
113 initial head orientation of the pedestrian, which is known to influence gaze patterns
114 (Tabone et al., 2024), was not controlled. While the above studies suggest that vehicle
115 distance and display placement affect pedestrian gaze, it remains unclear whether AR
116 displays are likely to influence gaze patterns in a similar manner, and whether the pattern is
117 likely to be the same in more dynamic, 3D contexts, when participants' initial attention
118 orientation is more systematically controlled. Addressing these gaps could significantly
119 inform AR placement strategies and potential use cases, as AR can be more versatile in its
120 location compared to eHMIs, which are typically fixed to the vehicle.

121 In AV-pedestrian interactions, longer gaze durations on AVs are linked to uncertainty about
122 the AV's intentions and increased feelings of danger (Liu et al., 2023). Similarly, longer gaze
123 duration on eHMI designs indicates lower perceived clarity in communicating AV intent to
124 pedestrians (Guo et al., 2022). Research suggests that intuitive eHMI designs can reduce
125 confusion and ease pedestrians' information load (Moore et al., 2019), with repeated
126 exposures fostering greater trust, faster crossing decisions, fewer gaze fixations, and
127 reduced attentional behaviours like head-turning (Faas et al., 2020; Hochman et al., 2020;
128 Yang et al., 2024). Intuitive AR designs may offer similar benefits, potentially streamlining
129 decision-making by enabling pedestrians to assess crossing safety more quickly (Tabone et
130 al., 2024), especially with repeated exposures. This increased efficiency in comprehension
131 could lead to shorter gaze fixation durations on both AV and AR elements in AR-present
132 versus no-AR trials, indicating reduced visual demands. However, the correlation between
133 intuitive design and gaze fixation patterns, particularly with repeated exposures, remains
134 underexplored. Investigating this relationship could significantly inform AR design for safer
135 and more efficient AV-pedestrian interactions.

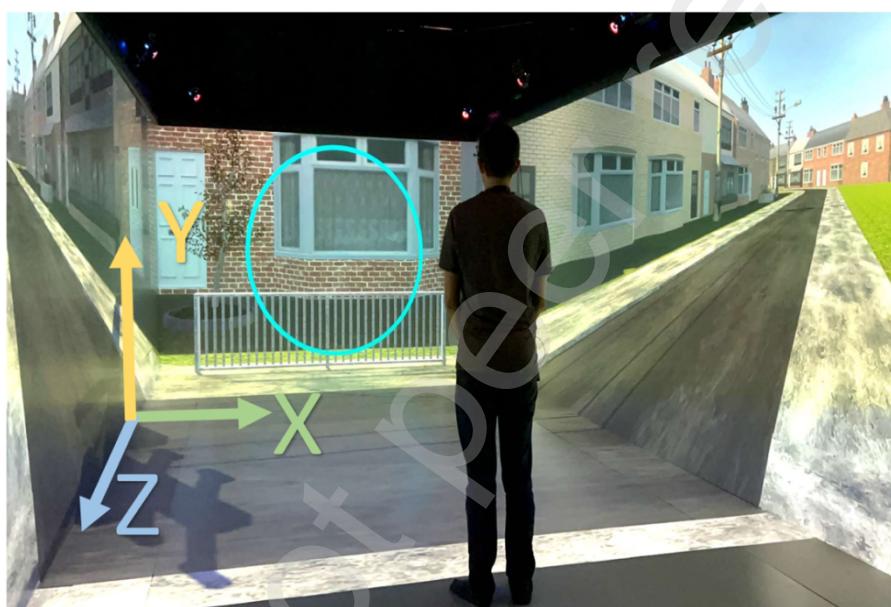
136 Additionally, if pedestrians' gaze patterns could be influenced by different AR placements at
137 different AV distances, one can assume that their crossing decisions could also change
138 correspondingly, as gaze behaviour often correlates with decision-making in value-based

139 choice experiments (Anderson, 2013; Gluth et al., 2018, 2020; Krajbich et al., 2010; Krajbich
140 & Rangel, 2011; Shimojo et al., 2003; Thomas et al., 2019). Research has shown that
141 pedestrians presented higher crossing probabilities with the presence of an eHMI
142 communicating the AV's intentions at greater AV distances before fully stopping (Dey,
143 Matviienko, et al., 2020; Lee et al., 2022; Pekkanen et al., 2022; Schneemann & Gohl, 2016).
144 AR could have a similar effect, potentially leading pedestrians to decide to cross earlier,
145 while the AV is still at a greater distance. However, the effect of AR placement on both gaze
146 and the timing of crossing decisions remains unexplored. Investigating this relationship
147 could provide critical insights into where AR should be positioned to optimise AV-pedestrian
148 communication at various distances.

149 In response to these considerations, our study posed the following research questions:

- 150 1. How do different AR locations influence pedestrians' gaze patterns as an AV
151 approaches?
- 152 2. How do the location, intuitiveness and repeated encounters of AR influence
153 pedestrians' fixation duration during the crossing task?
- 154 3. How do different AR locations influence pedestrians' crossing probabilities at various
155 AV approach distances?

156 To address these questions, our road crossing study examined pedestrians' gaze behaviour
157 while exposed to a variety of AR concepts, which were proposed in Tabone et al. (2023) and
158 Tabone et al. (2024), in a CAVE-based pedestrians simulator environment.


159 2 Method

160 2.1 Participants

161 Thirty participants were recruited for this study through the University of Leeds Driving
162 Simulator Database, social media and university mailing lists. Among the participants, 20
163 were males, nine were females, and one was unspecified (age range 22-53 years, $M = 31.50$,
164 $SD = 7.98$). All participants were required to be aged 18 and above, possess proficient
165 English language skills, and be free from significant mobility limitations, epilepsy,
166 claustrophobia, or proneness to disorientation. To compensate for taking part in the study
167 (60-90 minutes), each participant received a £15 Amazon gift voucher. The study received
168 ethical approval from the University of Leeds Research Ethics Committee (Ref: LLTRAN-150).

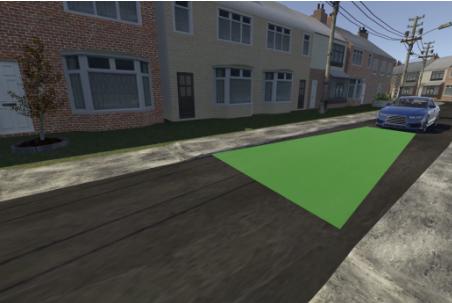
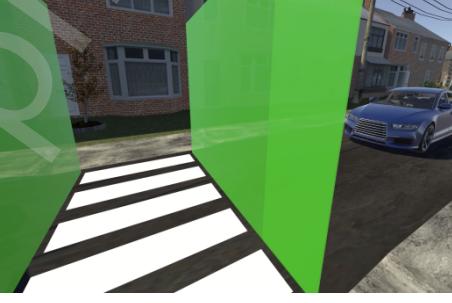
169 2.2 Apparatus and the virtual environment

170 The study was conducted in the Highly Immersive Kinematic Experimental Research (HIKER)
171 simulator, a 9×4 m CAVE environment at the University of Leeds (as shown in Figure 1). It
172 comprised eight 4K projectors and 10 Vicon Vero 2.2 IR cameras, managed via Vicon Tracker
173 3.9. The experimental virtual environment, designed in Unity, replicated a residential one-
174 way street featuring a single lane 3.6 meters wide, which was the same as Lee et al. (2022).
175 Eye-tracking data were captured at a frequency of 50 Hz using the Tobii Pro Glasses 2,
176 operated and calibrated with Tobii Controller Software.

177

178 *Figure 1. A participant in the HIKER lab waits for the start of a trial. In the coordinate system, the 'Y' axis aligns with the
179 participant's height, the 'Z' axis aligns with the pedestrian's intended path, and the 'X' axis aligns with the AV approaching
180 trajectory. The cyan circle in front is an attention attractor used to control the direction of pedestrians' initial focus. It
181 appears randomly, counterbalanced to the left, front, or right of the pedestrian. Pedestrians were required to look at this
182 area, to trigger the start of each trial.*

183 2.3 Study design



184 This study builds upon the experiment conducted in Tabone et al. (2024). A within-
185 participant experimental design was implemented, with participants experiencing 10 blocks
186 of 12 trials in each block. There were four independent variables: (i) AR designs (nine AR
187 designs/no AR), (ii) the location of the attention-attractor circle presented before the trial
188 (left/centre/right), (iii) vehicle yielding behaviour (yielding/non-yielding) and (iv) encounter
189 of the yielding trials (1st/2nd/3rd).

190 Each block featured a single AR condition, covering nine AR designs and one baseline
191 without AR. The attention attractor circle was used to simulate real-life situations where
192 pedestrians may be looking in different directions before crossing. Participants were asked
193 to focus on an attention-attractor circle at the start of the trial (the cyan circle shown in
194 Figure 1), located on either the left, centre, or right. They were only allowed to look freely
195 after the circle disappeared. Within each block, participants experienced three trials of
196 yielding AVs and one trial of a non-yielding AV, all approaching from the right. The order of
197 blocks was counterbalanced across participants, and the trials within each block were
198 presented in a randomised order.

199 The AR designs included in this study are illustrated in Table 1, which was categorised based
200 on their location: (i) Car Path – Four AR designs which were located in the area of the
201 approaching AV following its movement, (ii) Crossing Path – Two AV designs which were
202 located on the crossing path, (iii) Heads-up display (HUD) – Two AR designs which were
203 constantly located in their visual field regardless of head movements. A ninth design in the
204 original study (Tabone et al., 2023, 2024) was excluded from the analysis because it featured
205 a conventional traffic light, which does not fall into either category.

206 Table 1. Description of AR concepts with categorisations based on their locations

Categor y	Design	AR concept
Car Path		Planes on Vehicle A plane displayed on the vehicle's windshield area.

		<p>Conspicuous Looming Planes</p> <p>A scalable plane that changed size according to the yielding state. It gets smaller in the yielding state.</p>
		<p>Field of Safe Travel</p> <p>A projection on the road in front of the vehicle indicating a safe travel area.</p>
		<p>Phantom Car</p> <p>A phantom car was displayed to show the vehicle's predicted future motion.</p>
<p>Crossing Path</p>		<p>Augmented Zebra Crossing</p> <p>A zebra crossing was displayed on the crossing path.</p>
		<p>Virtual Fence</p> <p>Semi-translucent walls around the zebra crossing with a gate that was opened during the yielding state.</p>

HUD		Nudge HUD Text and icons were displayed in the user's field of view.
		Pedestrian Lights HUD A traffic light was displayed in the user's field of view.

207 At the start of each trial, participants stood at Point E (Figure 2.) and fixated on an
208 attention-attractor circle. After one second, the AV departed from Point A at a constant
209 speed of 48 km/h (30 mph). Seven seconds later, it reached Point B (43 m from the
210 participant), triggering the AR interfaces in non-baseline trials.

211 In yielding trials, the AV began decelerating 0.8 s after Point B (at Point C, 33 m away from
212 the participant), with a rate of 2.99 m/s^2 , matching Kaleefathullah et al. (2020). It stopped
213 four seconds later at Point D (3 m from the participant). The attention-attractor circle
214 disappeared precisely 0.2 s after deceleration onset (1 s after Point B), and pedestrians were
215 now allowed to observe the scene and make a crossing decision, as the AV reached 30
216 meters away.

217 In non-yielding trials, the attention-attractor circle also disappeared 1 s after Point B, but
218 the AV continued at constant speed.

219

220 *Figure 2. A bird's-eye view of the virtual road layout. Point A marks the starting position of the AV. Point B denotes the*
 221 *activation of the AR interfaces in non-baseline trials. Points C and D represent the onset of deceleration and the stopping*
 222 *point of the AV, respectively, during yielding trials. Point E shows the initial standing position of pedestrians at the*
 223 *beginning of each trial.*

224 **2.4 Procedure**

225 Upon arrival at the lab, participants were provided with an information sheet detailing the
 226 study and were given a consent form to sign after their queries were addressed. They then
 227 completed questionnaires to provide information such as demographics, nationality, and
 228 experience with AR/VR, with details reported in Tabone et al. (2024).

229 Before starting the trials, the eye-tracker was calibrated. Pedestrians were instructed to
 230 stand on a blue marker at the beginning of each trial. Once positioned, they initiated the
 231 trial by focusing on a stationary, cyan-coloured circle. A continuous one-second gaze on this
 232 attention-attracting circle was required to start the trial. If participants' attention deviated,
 233 an automatic beeping sound reminded them to refocus on the circle. Successful adherence
 234 to this instruction triggered the start of the trial, with the AV entering the simulation from a
 235 concealed position. Participants' primary task was to safely cross the virtual road from one
 236 curb to another when they felt safe. After providing their answer to the perceived
 237 intuitiveness verbally, participants returned to the starting point to begin the next trial.

238 Two practice trials were conducted before the main experiment: one with a non-yielding
 239 vehicle and another with a yielding vehicle. The study began after participants confirmed
 240 their understanding of the environment and the task and provided consent to take part.

241 To measure participants' perceived intuitiveness of the AR, they rated their agreement with
242 the statement: "The interface was intuitive for signalling: 'Please cross the road'" on a scale
243 from 1 (Strongly disagree) to 7 (Strongly agree) after each trial.

244 Upon completion, participants were thanked for their involvement and received
245 compensation for their time.

246 2.5 Data analysis

247 In the current study, non-yielding trials were excluded from further analysis because
248 pedestrians did not initiate crossings in these scenarios, and no learning could be assessed
249 with only a single repetition of non-yielding AVs. As a result, this study analysed 81 trials per
250 participant, covering nine AR conditions (three location-based groups covering eight AR
251 designs plus one baseline), with each condition further subdivided by three initial attention
252 directions and three yielding AVs, totalling 2430 trials. The order of each yielding AV within
253 the initial attention directions and within each AR condition was also labelled as the
254 1st/2nd/3rd encounter to analyse behaviour changes with repeated exposures.

255 In this study, the positions of vehicles and pedestrians were consistently logged at a
256 frequency of 120 Hz and pedestrians' gaze data were recorded at 50 Hz. Raw gaze data were
257 selected for analysis from the moment the attention-attractor circle disappeared until either
258 the pedestrian initiated a crossing, or the AV passed, for trials where pedestrians chose not
259 to cross. This period captured the interaction phase between the pedestrian and the AV.

260 Gaze data were collected using a Tobii Glasses 2 (firmware 1.25.6-citronkola-0; head unit
261 0.062) mobile eye-tracker, which was operated and calibrated using the Tobii Controller
262 Software v.1.114.20033, with thorough calibration procedures conducted before data
263 collection to ensure accuracy and precision. However, factors such as frequent blinking or
264 missing data could reduce the gaze sample rate. To ensure the quality of gaze data analysis,
265 we identified gaps in the recorded eye-movement data, considering any gap longer than 400
266 milliseconds as missing data rather than a short interruption like blinking, whi. Trials with
267 more than 30% missing data were excluded, as well as data from Participants 6, 17, and 18,
268 where over 30% of their trials contained more than 30% missing data, resulting in the
269 exclusion of 396 trials (Bindschädel et al., 2022). After further exclusion of 51 trials, where

270 pedestrians did not cross, the final analysis included data from 1983 trials, comprising 1768
271 AR-present trials and 215 no-AR (Baseline) trials.

272 [2.5.1 Pedestrian gaze patterns](#)

273 To analyse pedestrians' gaze behaviour during interactions with AVs in a 3D environment,
274 we visualised heat maps of their gaze points on the Y-Z plane (horizontal and vertical visual
275 axes, see coordinate system in Figure 1) as the AV approached at different *Distance Intervals*
276 along the X-axis. This analysis was conducted in a world-referenced coordinate system,
277 assuming gaze positions projected onto a plane perpendicular to the AV's travel direction.
278 Grouping gaze data into intervals, rather than using raw continuous distance, ensures
279 sufficient data points per interval for meaningful visualisation, reducing noise and creating
280 smoother and more interpretable gaze heat maps. This method also highlighted distance-
281 specific shifts in gaze behaviour, making it easier to track attention changes as the AV
282 approached.

283 Once the attention attractor disappeared, allowing pedestrians to observe the situation and
284 begin their interaction with the AV at a distance of 30 meters, gaze data were grouped into
285 10-meter *Distance Intervals* for the remaining approach time, with intervals defined as 30–
286 20 m, 20–10 m, and 10–0 m meters away from the pedestrians. These intervals were chosen
287 based on findings from Dey et al. (2019), which suggests significant changes in pedestrians'
288 gaze patterns every 10 meters as a vehicle approaches. Starting the interaction at 30
289 meters, with a time gap of less than 3 seconds between the pedestrian and the AV, has been
290 shown in previous research to be a situation of higher uncertainty (Tian et al., 2023),
291 necessitating explicit communication mechanisms for right-of-way decisions to ensure safe
292 and smooth interactions.

293 For each *Distance Interval*, the coordinates of pedestrians' gaze points were visualized on
294 the Y-Z plane, and heat maps were created using Kernel Density Estimation (KDE), a
295 statistical method that smooths data points to produce a continuous density surface. The
296 resulting heat map uses a colour gradient from blue (lower density) to red (higher density)
297 to illustrate how heavily pedestrians scanned the environment, elements of the AV or AR, at
298 different distances as the AV approached. All data processing and visualization were
299 conducted using Python 3.

300 2.5.2 Change in Fixation Duration (Δ FD)

301 Longer gaze fixations are associated with higher visual effort and greater difficulty in
302 processing the visual information (He & McCarley, 2010; Herten et al., 2017; Jacob & Karn,
303 2003; Kotval & Goldberg, 1998; Milton et al., 1950). To investigate how AR would influence
304 pedestrians' visual load, we analysed their gaze fixations on specific areas of interest (AOIs)
305 by tracking the gaze location frame by frame, starting from when the attention-attractor
306 circle disappeared until the pedestrian initiated crossing.

307 The AOIs investigated in this study were: (1) Car body: The AOI for the car body was defined
308 by its moving 3D spatial boundaries, with the car's centre position (XYZ coordinates) and its
309 dimensions (length, width, and height) being updated for each frame. (2) AR interface: The
310 AOI for the AR interface was represented by a moving plane in the 3D environment, with its
311 centre position and size defined in the virtual space each frame. Gaze points that did not fall
312 within either of these two AOIs were classified as falling into the "other" AOI.

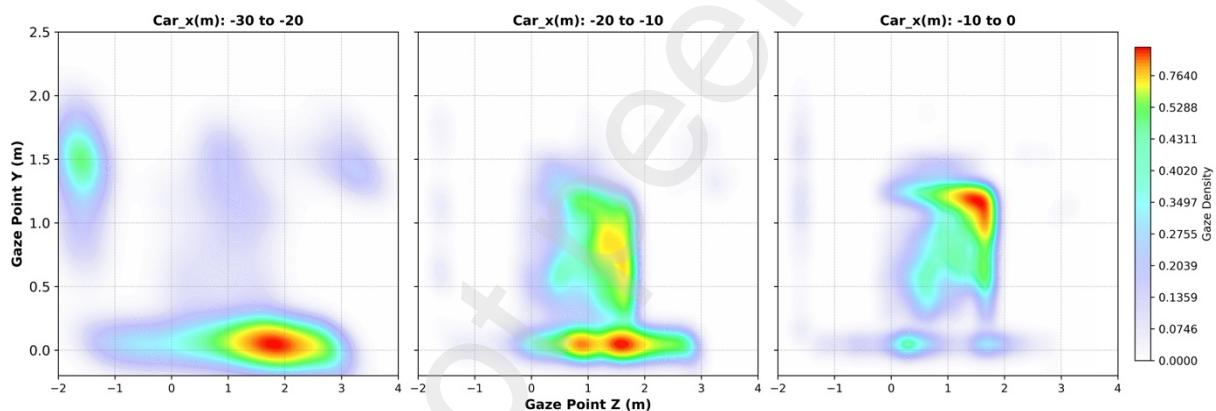
313 Following the instructions from the Tobii White Paper (Olsen, 2012), raw gaze data were
314 first linearly interpolated for gaps shorter than 75 milliseconds to handle data quality issues
315 and then filtered using a 3-sample moving median filter to smooth high-frequency noise.
316 Fixations were subsequently detected using the I-VT (Identification by Velocity Threshold)
317 algorithm, with a velocity threshold of 100°/s and a minimum fixation duration of 100
318 milliseconds. Although typical fixation durations can range from 50 to 500 milliseconds,
319 depending on the task (Negi & Mitra, 2020; Rayner, 2009). We adopted the 100 milliseconds
320 threshold in line with established standards (Salvucci & Goldberg, 2000). Adjacent fixations
321 within 0.5° and separated by gaps shorter than 75 milliseconds were merged into a single
322 fixation to account for brief interruptions. The total fixation duration for both the car and AR
323 AOIs was calculated during AR-present trials, and solely on the car during no-AR baseline
324 trials for further analysis.

325 To assess the impact of AR on pedestrian visual load, we introduced the "Change in Fixation
326 Duration (Δ FD)" metric. We first established each participant's baseline by averaging their
327 total fixation duration on the vehicle in no AR trials, representing visual load without AR. In
328 each AR present trial, we then establish the total fixation duration on both the AR interface

329 and the vehicle. Summing the two AOIs overcame the challenge where, in some AR
330 conditions (e.g., HUDs, Virtual Fence, Car Path), the AR overlapped with the vehicle, making
331 gaze indistinguishable, while in others (e.g., Crossing Path), it competed for attention
332 without overlapping. ΔFD was calculated by subtracting each corresponding participant's
333 baseline fixation time from the total fixation duration on both the AR interface and the
334 vehicle. This metric ensures that ΔFD consistently reflects and quantifies additional
335 attention required by the AR, accounting for individual differences in visual load, and
336 addresses the challenge of distinguishing gaze focus between AR interfaces and the vehicle.
337 A positive ΔFD indicated an increased visual load, while a negative ΔFD suggested a reduced
338 visual load, compared to baseline, during crossing decisions.

339 To answer the second research question, we conducted a Generalised Linear Mixed Model
340 (GLMM) considering repeated measures analysis (Stroup, 2012) on ΔFD . The model applied
341 a linear distribution with an identity link function and included the following variables: (1)
342 *AR Location* (Car Path, Crossing Path, or HUD), (2) *Intuitiveness Rating* (post-trial scores
343 verbally provided by pedestrians), and (3) *Encounter* (number of interactions within each
344 condition: 1st/2nd/3rd).

345 2.5.3 Crossing probabilities


346 A GLMM was conducted to analyse the likelihood of pedestrians deciding to cross when the
347 AV was at different *Distance Interval* (30–20 m, 20–10 m, and 10–0 m), due to the time
348 sequential nature of these distance intervals (Stroup, 2012). The analysis involved a binary
349 logistic regression with a logit link function, including the main effect of *Distance Interval*
350 and its interaction with *AR Location* (Baseline/ Car Path/ HUD/ Crossing Path) to investigate
351 how pedestrians' crossing probabilities at various AV approach distances are influenced by
352 different AR placements

353 In this paper, all GLMM analyses included participant as a random effect to account for
354 individual differences, with Bonferroni-adjusted pairwise comparisons for post-hoc analyses.
355 The analysis was conducted using SPSS 28, with a significance level set at $p < .05$.

356 **3 Results**

357 **3.1 Gaze heat map**

358 In the Baseline condition without AR, Figure 3 from the left to right shows pedestrians' gaze
359 heat map as the AV approached. When the AV was 30-20 meters away, pedestrians' gaze
360 was more on the environment in front of them (the blob in the left top in the first figure) or
361 on the ground. When the vehicle was closer to 20-10 meters, pedestrians increasingly
362 focused on the car itself. Finally, when the AV was within 10 meters, their gaze concentrated
363 predominantly on the AV, particularly on the windscreens. This gaze pattern, where
364 pedestrians' attention shifted from the environment to the car and driver's seat as the AV
365 approached, was also observed with different AR placements (Figure 4, Figure 5, Figure 6),
366 with slight variations depending on the design.

368 *Figure 3. In Baseline trials with no AR concepts, from left to right are pedestrians' gaze heat map on Y-Z plane when the*
369 *AV's distance to pedestrians (Car_x) was -30 to -20, -20 to -10, and -10 to 0, metres, smoothing using KDE.*

370 With AR on the Car Path (Figure 4a-d), pedestrians' gaze patterns generally resembled the
371 Baseline (Figure 3) when the AV was 30-20 meters, focusing mainly on the environment.
372 However, when a Phantom Car (an AR-generated duplicate of the vehicle indicating its
373 predicted future motion) appeared (Figure 4d), their gaze shifted more towards the
374 vehicle's position in the Y-Z plane (likely focusing on the approaching Phantom Car) between
375 30 and 20 meters, before concentrating on the windscreens as the AV approached within 20
376 meters.

377 In contrast, the other ARs on the Car Path (Figure 4a-c) notably altered gaze behaviour as
378 the AV moved closer, especially between 20-10 meters. Compared to the Baseline (Figure 3),
379 pedestrians focused more on the car and windscreens when the AR was projected onto the

windscreen, such as Planes on Vehicle (Figure 4a) and Conspicuous Looming Planes (Figure 4b), with less attention paid to the grill area as the AV was nearly 10 meters away. When AR was projected onto the road, as with the Field of Safe Travel (Figure 4c), pedestrians' attention shifted towards the road between 20-10 meters but became more dispersed across the vehicle and the ground as the AV closed within 10 meters.

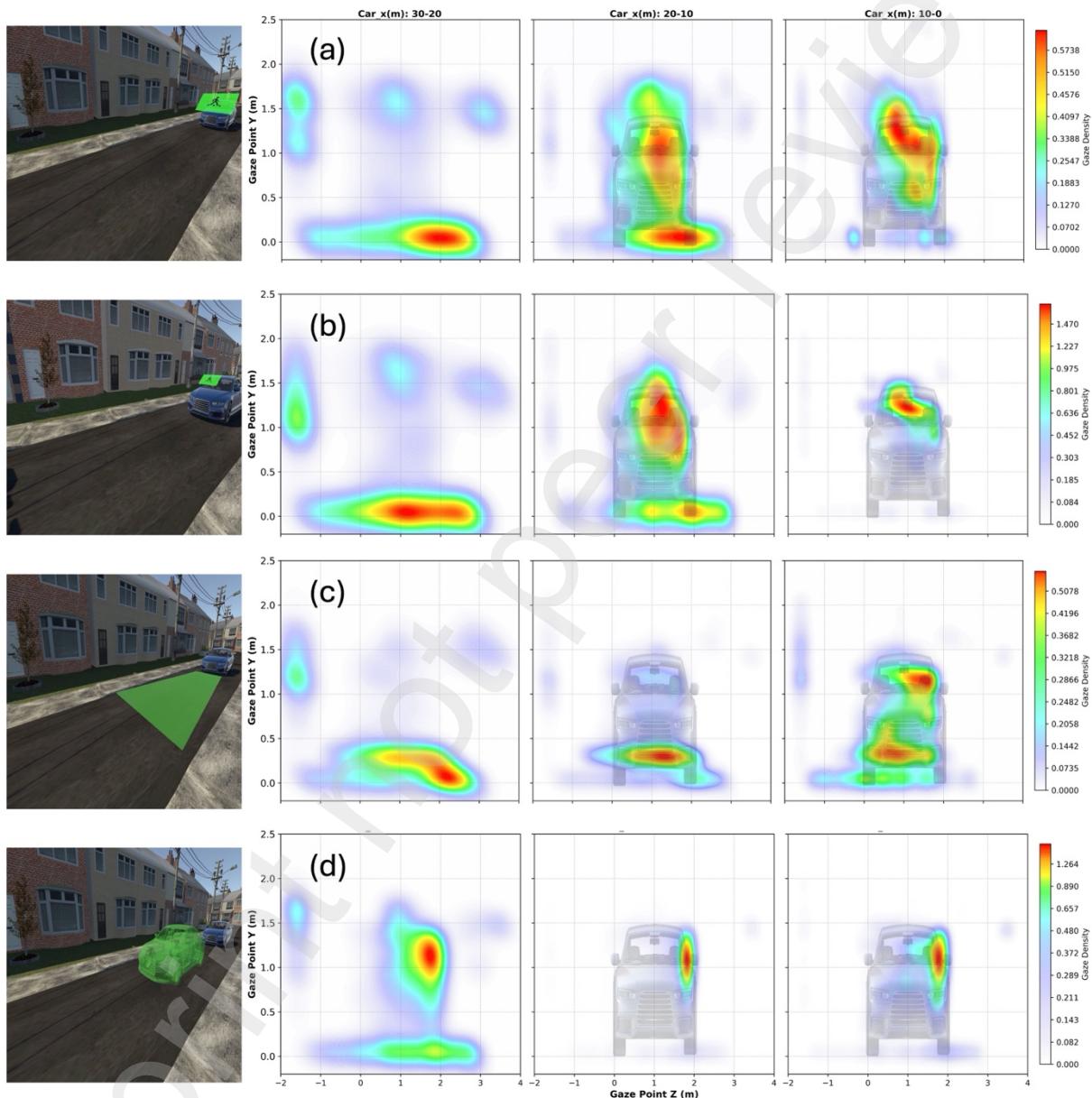
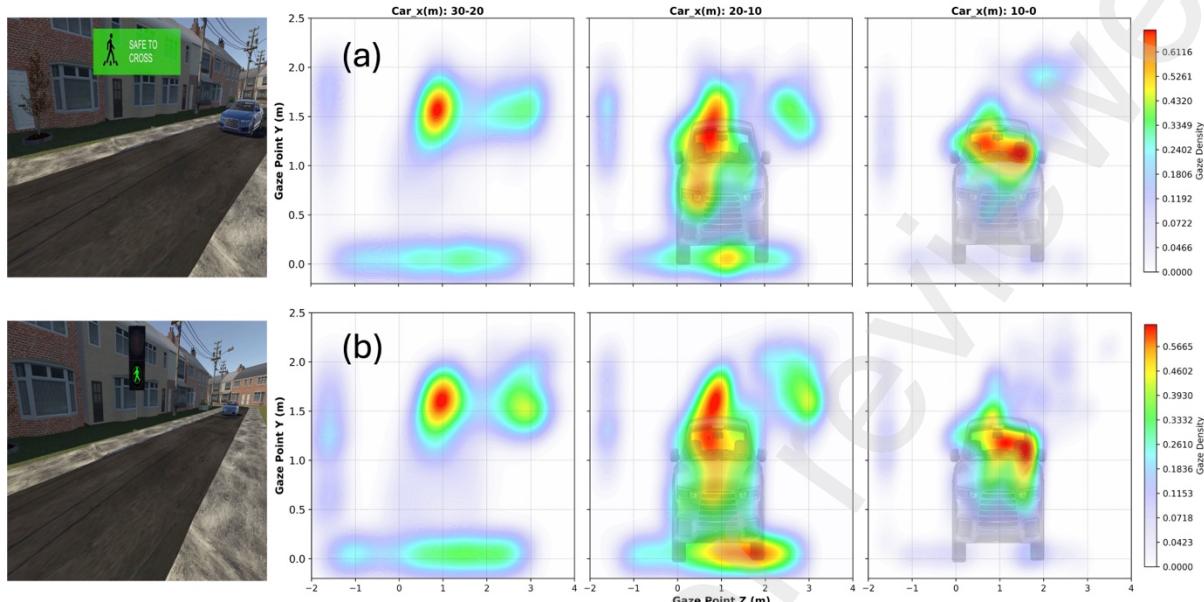
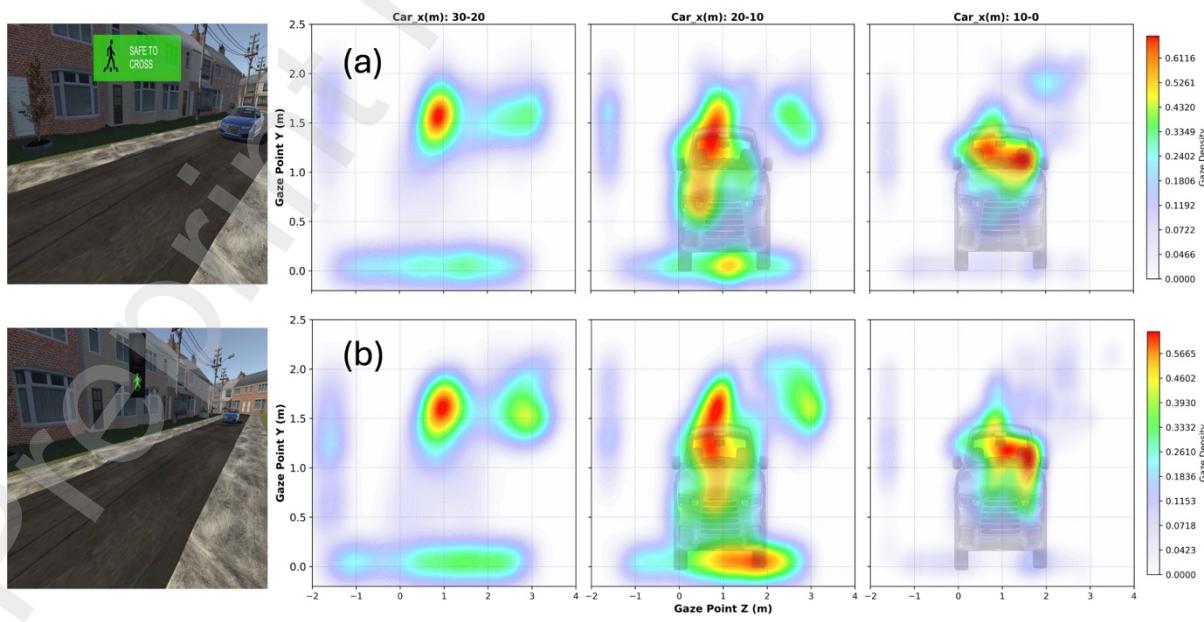



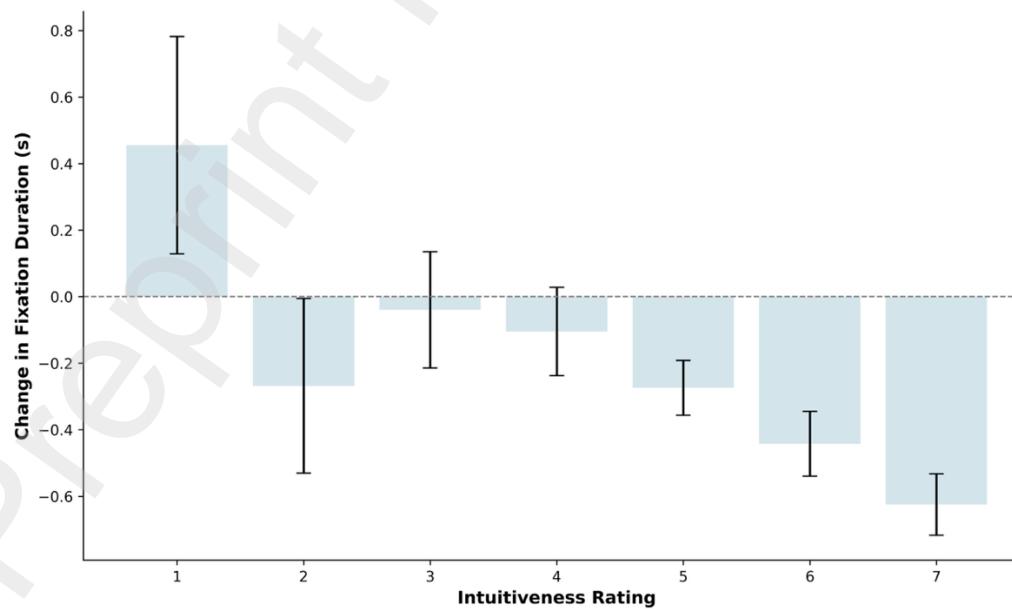
Figure 4. In AR on Car Path, pedestrians' gaze heat maps for designs: (a) Planes on Vehicle, (b) Conspicuous Looming Planes, (c) Field of Safe Travel, and (d) Phantom Car.


In HUD conditions (Figure 5a and b), when the AV was 30-20 and 20-10 meters away, pedestrians focused less on the environment than in Baseline trials, concentrating instead on two areas: the HUD AR and another area likely on the car. As the AV came within 10

391 meters, their gaze on the windscreen became more dispersed, but there was less focus on
392 the grill compared to the Baseline (Figure 3).

393
394 *Figure 5. In AR HUD trials, pedestrians' gaze heat maps for designs: (a) Nudge HUD, and (b) Pedestrian Lights HUD.*

395 Regarding AR on Crossing Path (Figure 6a and b), with an Augmented Zebra Crossing (Figure
396 6a), pedestrians focused more on the ground and less on the car when the AV was beyond
397 10 meters (30-20 and 20-10), but their gaze became more dispersed across the vehicle and
398 towards the ground as the AV approached within 10 meters, compared to Baseline (Figure
399 3). With a Virtual Fence added (Figure 6b), pedestrians' gaze remained concentrated on the
400 fence's edge, regardless of the AV's distance.

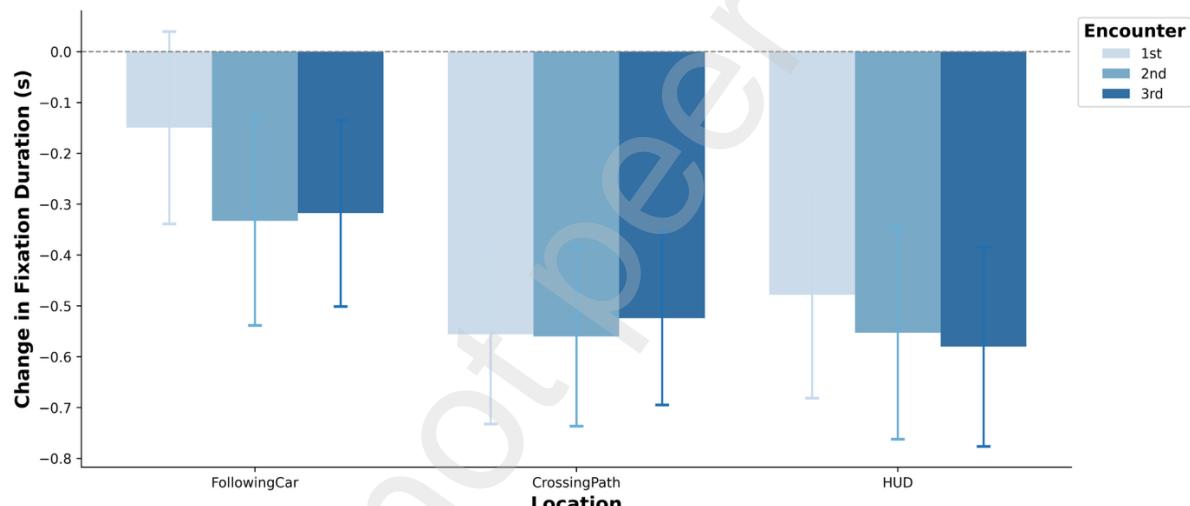

401

402 *Figure 6. In AR Crossing Path trials, pedestrians' gaze heat maps for designs: (a) Augmented Zebra Crossing, and (b) Virtual*
403 *Fence.*

404 3.2 Change in Fixation Duration (Δ FD)

405 A GLMM analysis was conducted to investigate the effects of *AR Location* (Car Path, Crossing
406 Path, or HUD), *Intuitiveness Rating* and *Encounter* on pedestrians' Change in Fixation
407 Duration, with participant included as a random effect. The model revealed significant main
408 effects of *Intuitiveness Rating*, $F(6, 1757) = 21.23$, $p < .001$, *Encounter*, $F(2, 1757) = 8.29$, p
409 $< .001$, and *AR Location*, $F(2, 1757) = 22.74$, $p < .001$.

410 For *Intuitiveness Rating*, estimated marginal means showed that Δ FD became progressively
411 more negative as ratings increased (from $M = 0.13$, $SE = 0.17$ at Rating 1 to $M = -0.66$, $SE =$
412 0.09 at Rating 7), as shown in Figure 7. Sequential Bonferroni-adjusted pairwise
413 comparisons indicated that the most negative Δ FD occurred at Rating 7, which differed
414 significantly from all lower ratings (all $p < .001$). Rating 6 ($M = -0.61$, $SE = 0.09$) was also
415 significantly more negative than Ratings 5 ($p = .018$), 4, 3, 2, and 1 (all $p < .001$). Rating 5 (M
416 = -0.51 , $SE = 0.10$) was more negative than Ratings 4 ($p = .038$), 3, 2, and 1 (all $p < .001$).
417 Rating 4 ($M = -0.40$, $SE = 0.11$) was more negative than Ratings 3 ($p = .046$), 2, and 1 (both
418 $p < .001$). Finally, Rating 3 ($M = -0.25$, $SE = 0.12$) was more negative than Rating 1 (p
419 = $.004$), and Rating 2 ($M = -0.09$, $SE = 0.13$) was also more negative than Rating 1 ($p = .007$).
420 These results suggest that higher perceived intuitiveness of AR interfaces was associated
421 with a greater reduction in visual load compared to baseline.



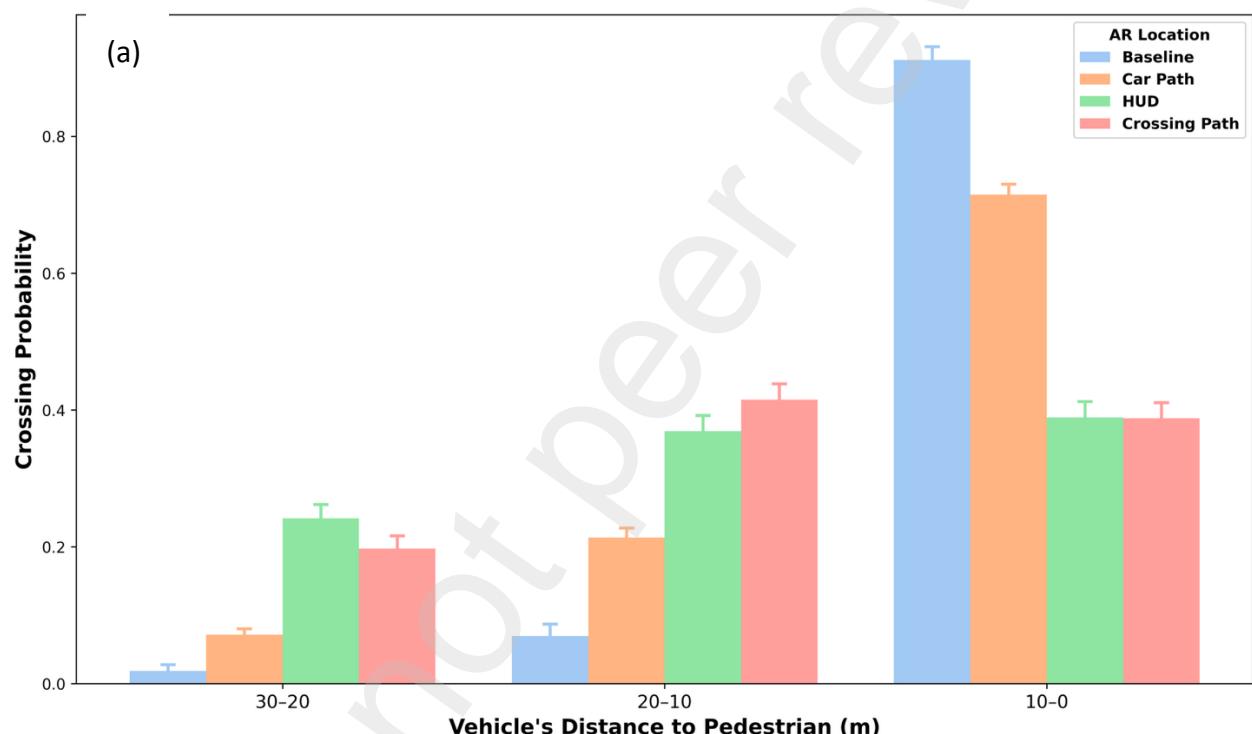
422

423 Figure 7. The bar plots and error bars (SE, standard errors, between-subjects) for the impact of Intuitiveness Rating of AR on
424 the Change in Fixation Duration Time.

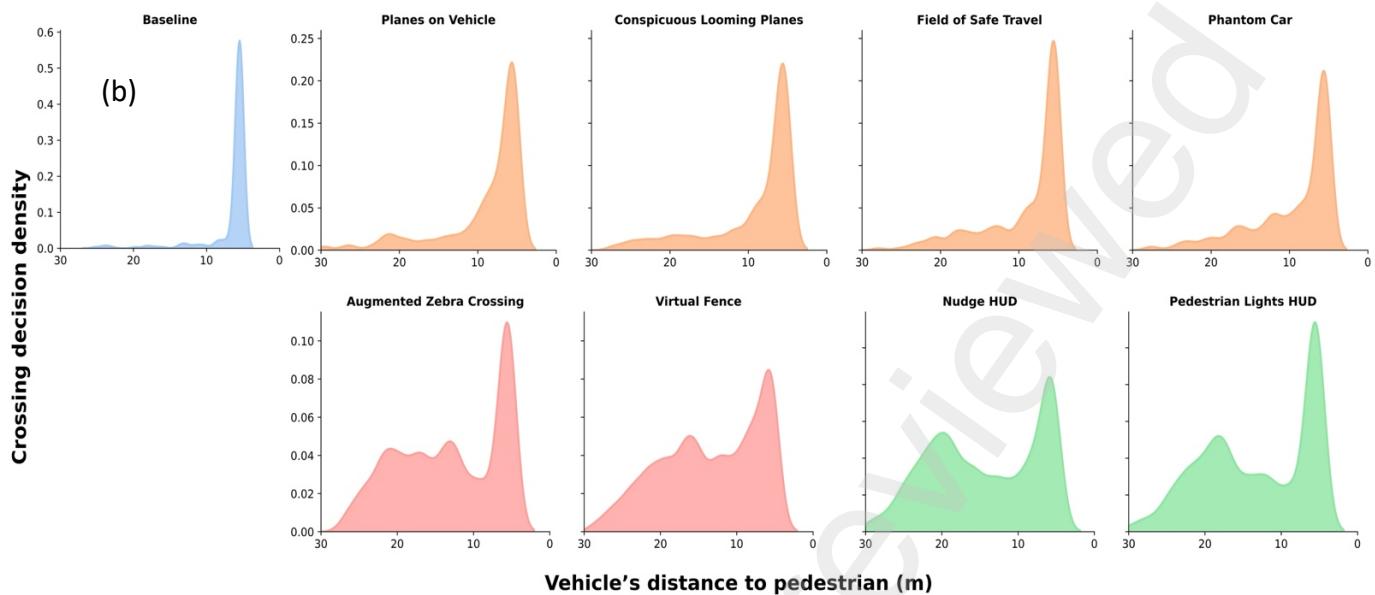
425 Car Path showed the least negative Δ FD ($M = -0.14$, $SE = 0.09$), significantly less than both
426 HUD ($M = -0.33$, $SE = 0.09$; $p < .001$) and Crossing Path ($M = -0.32$, $SE = 0.09$; $p < .001$),
427 which did not differ from each other ($p = .804$). Thus, HUD and Crossing Path reduced visual
428 load more than the Car Path interfaces.

429 For *Encounter*, Δ FD was least negative at the 1st encounter ($M = -0.18$, $SE = 0.09$) and
430 became significantly more negative by the 2nd ($M = -0.32$, $SE = 0.09$; $p < .001$) and 3rd
431 encounters ($M = -0.30$, $SE = 0.09$; $p = .002$). The 2nd and 3rd encounters did not significantly
432 differ ($p = .515$). This indicates that repeated exposure reduced visual load during later
433 encounters with AR.

434
435 Figure 8. The bar plots and error bars (SE, standard errors, between-subjects) for the impact of AR Location, and the number
436 of Encounter, on the Change in Fixation Duration Time.


437 3.3 Crossing probability at different AV approach distances

438 A GLMM was conducted to analyse the likelihood of pedestrians deciding to cross when the
439 AV was at different *Distance Interval* and its interaction with *AR Location*.


440 The analysis revealed significant effects of *Distance Interval* of AV ($F (2,5937) = 237.630$,
441 $p < .001$) and interaction with *AR Location* ($F (9, 5937) = 51.553$, $p < .001$) on the probability
442 of crossing.

443 As shown in **Error! Reference source not found.**a, compared when AV was 30-20 meters
444 away ($M = 0.094$, $SE = 0.012$), the likelihood of pedestrians crossing significantly increased as

445 the vehicle approached closer to 20-10 meters ($M = 0.233$, $SE = 0.014$, $p < .001$) and 10-0
446 meters ($M = 0.643$, $SE = 0.016$, $p < .001$). Post hoc analysis using LSD showed that crossing
447 probabilities significantly increased as the AV approached closer, from 20-10 meters to 10-0
448 meters ($p < .001$). However, further post hoc analysis of the interaction effect revealed that
449 this increasing tendency was significant only in the Baseline and AR Car Path conditions. In
450 contrast, crossing probabilities did not differ significantly between the *Distance Interval* of
451 20-10 meters and 10-0 meters in both the AR Crossing Path and HUD conditions (both
452 $p > .05$).

453

454

455 *Figure 9.(a) Results from GLMM showing bar plot of pedestrians' crossing decision probabilities across different Distance*
 456 *Interval of AV, clustered by the AR Location. Error bar stands for the standard error. (b) Density plots of crossing*
 457 *probabilities using KDE, depicting their relationship to AV distance in each AR design. The colour scheme matches that of*
 458 *panel (a): blue for Baseline, orange for AR Car Path, green for AR HUD, and red for AR Crossing Path, regarding the AR*
 459 *Location.*

460 When the AV was at both 30-20 and 20-10 meters, the Baseline condition showed
 461 significantly lower crossing probabilities compared to the AR Car Path condition ($M = 0.019$,
 462 $SE = 0.009$ vs. $M = 0.072$, $SE = 0.009$; $M = 0.070$, $SE = 0.017$ vs. $M = 0.214$, $SE = 0.014$; both $p < .001$). Additionally, the crossing probabilities in both the Baseline and AR Car Path
 463 conditions were significantly lower than those in the AR Crossing Path condition ($M = 0.197$,
 464 $SE = 0.019$; $M = 0.415$, $SE = 0.023$; both $p < .001$) and the AR HUD condition ($M = 0.242$, $SE = 0.020$; $M = 0.369$, $SE = 0.023$; both $p < .001$). The differences between AR Crossing Path and
 466 AR HUD were not significant in these two intervals (both $p > .05$).
 467

468 When the AV was within 10 meters away, the Baseline condition showed significantly higher
 469 crossing probabilities ($M = 0.912$, $SE = 0.019$) compared to the AR Car Path condition ($M = 0.715$, $SE = 0.015$, $p < .001$). Both conditions had significantly higher crossing probabilities
 470 than the AR Crossing Path condition ($M = 0.388$, $SE = 0.023$, both $p < .001$), and the AR HUD
 471 condition ($M = 0.389$, $SE = 0.023$, both $p < .001$), with no significant difference between AR
 472 Crossing Path and AR HUD ($p > .05$).
 473

474 4 Discussion

475 This study used a CAVE-based virtual reality pedestrian simulator to investigate pedestrians'
476 gaze patterns and crossing probabilities across different AV approach distances and AR
477 placements. Additionally, this study examined how pedestrians' visual load can be reduced
478 by AR, considering different placements, levels of intuitiveness, and repeated exposures.

479 Results showed that AR facilitated pedestrians' understanding of the vehicle's intent, as
480 indicated by increased crossing probabilities before the vehicle fully stopped, regardless of
481 AR placement (Figure 9a and b). A bimodal distribution of crossing decisions was observed
482 in previous studies (Dey, Matviienko, et al., 2020; Lee et al., 2022; Pekkanen et al., 2022;
483 Schneemann & Gohl, 2016), where pedestrians were more likely to cross either when the
484 vehicle completed a full stop or at a very far distance. However, this study used a time gap
485 of less than 3 seconds, a kinematic situation characterised by higher uncertainty and more
486 varied interaction patterns (Tian et al., 2023), and pedestrians are more likely to cross when
487 the AV comes to a full stop, which was also observed in baseline trials. However, in such
488 short time gaps, we also identified a bimodal distribution of crossing decisions with AR
489 presence (Figure 9a and b). Similar to the effectiveness of eHMI (Dey, Matviienko, et al.,
490 2020; Lee et al., 2022; Madigan et al., 2023), AR enabled pedestrians to interpret the
491 vehicle's intent earlier, promoting crossing before the vehicle fully stopped. Among the
492 different AR placements, AR on the Crossing Path and HUD showed more effective than Car
493 Path at greater distances, likely due to their higher visibility when the AV was further, which
494 is known to enhance the effectiveness of eHMIs in influencing crossing decisions at various
495 AV approach distances (Dey, Habibovic, et al., 2020; Lee et al., 2022).

496 Gaze heat maps (Figure 3, Figure 4, Figure 5, Figure 6) revealed a distinct pattern as the
497 vehicle approached, consistent with eye-tracking studies involving manually driven vehicles
498 (de Winter et al., 2021; Dey et al., 2019). When the vehicle was distant, pedestrians
499 primarily scanned the environment or focused on the crossing path or road surface ahead of
500 the vehicle. This behaviour likely occurred because a distant car poses no immediate threat.
501 However, when an immediate threat appeared, such as a fast-approaching phantom car
502 ahead of the AV, pedestrians' attention was captured immediately (Figure 4d). As the AV

503 drew closer, their gaze shifted noticeably from the road to the main body of the vehicle, and
504 eventually to the windshield.

505 Interestingly, even in the absence of drivers in AVs, pedestrians continued to focus on the
506 windshield, possibly trying to gather information or establish eye contact (Onkhar et al.,
507 2022). A concentrated gaze density was observed on the left seat, which, given that the
508 driver's seat is on the right in the UK, could be attributed to the looming effect (Tian et al.,
509 2022), making the left seat appear closer to pedestrians to be focused on. This suggests that
510 pedestrians' gaze patterns may differ in situations with a driver present, different driving
511 directions, and left-hand or right-hand drive, as well as the road segments and real-world
512 conditions. These dynamics and complexities warrant further investigation.

513 Additionally, pedestrians' gaze patterns were significantly altered in AR Crossing Path
514 (Figure 6) and HUD (Figure 5) trials compared to Baseline (Figure 3) when the AV was 30 to
515 20 meters away. In contrast, significant changes in pedestrians' gaze patterns in Car Path
516 (Figure 4) trials were observed when the AV was within 20 meters. This finding highlights
517 AR's potential advantage in AV-pedestrian communication, offering greater versatility in its
518 location and visibility than eHMI attached to or projected from the AV. AR on Crossing Path
519 and HUD are particularly useful when the AV is further away, while AR on Car Path is more
520 effective when the AV is closer.

521 In this study, AR HUD facilitated earlier crossing decisions (Figure 9) and led to the greatest
522 decrease in fixation duration compared to baseline (Figure 8), aligning with Tabone et al.
523 (2023) findings, where a HUD display was preferred over cues projected on the road or on
524 the approaching vehicle. However, the HUD seemed to distract pedestrians when the AV
525 was more than 10 meters away, as they looked aside to avoid it (Figure 5). Peereboom et al.
526 (2024) found similar results, where HUD received lower ratings and was less preferred
527 compared to baseline, potentially causing discomfort, especially at close distances. In this
528 study, HUD was most effective in influencing crossing decisions when the AV was 30 to 20
529 meters away, suggesting that such AR is most appropriate for situations involving distant
530 AVs.

531 Previous research suggested that embedding AR in the environment could divide
532 pedestrians' attention from the oncoming vehicle to the road instead (Peereboom et al.,
533 2024; Tabone et al., 2023). However, this study showed that this was not the case when the
534 AV was farther away. Even with an Augmented Zebra Crossing on the Crossing Path (Figure
535 6a), pedestrians' attention pattern did not change much compared to Baseline (Figure 3)
536 when the AV was 30 to 10 meters away, as they were not focused on the vehicle during this
537 phase. On the other hand, Virtual Fence led to a more concentrated gaze patterns from
538 pedestrians (Figure 6b). This suggests that AR on the Crossing Path may be best used when
539 the AV is farther away to avoid distracted attention as it approaches.

540 Some research has highlighted that visually demanding tasks and distractions pose
541 significant risks to pedestrians (Tapiro et al., 2020), suggesting that adding external
542 interfaces could exacerbate these issues, especially when pedestrians rely primarily on
543 kinematic cues from vehicles to make crossing decisions (de Winter & Dodou, 2022; Li et al.,
544 2018). However, our findings reveal that the presence of AR concepts did not increase
545 the fixation duration and visual demands in AV-pedestrian communication, even with the
546 introduction of additional external messages, provided these are intuitively designed (Figure
547 7). As illustrated in Figure 7, the ΔFD was negative when the AR concept was perceived as
548 intuitive, indicating a reduction in visual load compared to the baseline scenario with no
549 external messages. However, a poorly designed AR interface can impose additional
550 visual effort, potentially undermining pedestrian safety, whereas intuitive designs
551 reduce processing demands and support safer crossing behaviour. This aligns with
552 recommendations from other eHMI studies advocating for messages that are both intuitive
553 and familiar to pedestrians (de Clercq et al., 2019; Hensch et al., 2019; Lee et al., 2022). This
554 result demonstrates the potential benefits of integrating AR in AV-pedestrian
555 communication and underscores the importance of creating clear and intuitive interfaces
556 for safe and efficient pedestrian engagements. However, this research only involves simple
557 one-to-one interactions, leaving uncertainty about how the presence of multiple vehicles
558 might impact visual load for some designs, particularly those associated with the AV (Car
559 Path). For instance, with multiple AVs, each vehicle could project different information,
560 potentially overwhelming pedestrians with competing signals. In contrast, HUD and Crossing
561 Path designs are intended to provide consistent, situationally aware guidance that doesn't

562 change with each individual vehicle. This discrepancy in AR concepts could have a significant
563 effect on visual load, especially as pedestrians attempt to process information from multiple
564 sources simultaneously.

565 Moreover, repeated exposure to AR interfaces significantly enhanced their effectiveness,
566 supporting the notion of a positive learning curve in AR adoption across all three placements
567 (Figure 8). As participants became more familiar with the interfaces, their ΔFD decreased,
568 suggesting that regular interaction with AR could boost pedestrian confidence and safety
569 over time, even after just one exposure. This observation is consistent with studies
570 indicating that pedestrians can quickly adapt to novel types of eHMIs after several
571 encounters (de Clercq et al., 2019; Eisele & Petzoldt, 2022; Lee et al., 2022; Yang et al.,
572 2024).

573 While our findings indicate that intuitive AR can reduce visual load (negative ΔFD) and
574 promote earlier crossing decisions, these benefits also raise concerns about potential over-
575 reliance. Prior work has shown that pedestrians sometimes prioritise external messages
576 over vehicle kinematics, stepping into the road even when signals are misleading or
577 incongruent with motion cues (Holländer et al., 2019; Kaleefathullah et al., 2020). Repeated
578 exposure may further reinforce this dependency, as pedestrians adapt to AR cues and
579 reduce head checks or monitoring of the vehicle (Yang et al., 2024). Such over-trust could
580 undermine safety in real traffic, especially in multi-vehicle contexts where competing or
581 inconsistent AR projections may overwhelm attention. To mitigate these risks, AR should
582 complement rather than substitute kinematic information, with intuitive interfaces designed
583 to support safety crossing decisions. This aspect warrants further investigation to ensure the
584 safe application of AR technologies in pedestrian environments.

585 5 Limitations and Future Work

586 While this study offers insights for designing AR interfaces in AV-pedestrian communication,
587 it also has limitations that suggest areas for future research. First of all, while ARs have the
588 advantage of communicating with multiple road users over eHMIs, this research only
589 investigates one pedestrian interaction with one AV at a time. Future research could explore
590 AR's role in more complex interactions.

591 The experimental context was simplified, focusing on an open, straight road and future
592 research can be built on a complex traffic scenario such as intersections or roundabouts, as
593 well as different road infrastructure such as zebra crossings (Madigan et al., 2023; Yang et
594 al., 2024). Additionally, further research can extend this study under different kinematic
595 situations with different driving behaviours and time gaps, which may identify a different
596 role of explicit communication in varying implicit conditions (Dey, Matviienko, et al., 2020;
597 Lee et al., 2022; Madigan et al., 2023). Furthermore, the homogeneity of participant
598 demographics, such as age and gender, which are known to influence attention allocation
599 (Tapiro et al., 2016), can be further explored to propose more personalised AR. Future
600 research should aim to test these AR interfaces in more varied and dynamic outdoor
601 scenarios to validate their effectiveness across different pedestrian populations and urban
602 settings.

603 6 Conclusion

604 This study showcases the promising role of AR in enhancing pedestrian safety and decision-
605 making in AV contexts, emphasizing the importance of intuitive, familiar, and repeatedly
606 exposed AR interfaces in reducing visual load. The study also indicates that AR can be more
607 useful when the AV is farther away and there is more uncertainty about its intents.
608 However, it is still crucial to continue refining these technologies through real-world testing
609 and broader user engagement to ensure that they meet the varied needs of all pedestrians
610 in increasingly automated urban environments.

611 Acknowledgement

612 This research was supported by a grant from the European Union's Horizon 2020 research
613 and innovation programme, funded under the Marie Skłodowska-Curie actions, grant
614 agreement number 860410.

615 References

616 Anderson, B. A. (2013). A value-driven mechanism of attentional selection. *Journal of Vision*,
617 13(3). <https://doi.org/10.1167/13.3.7>

618 Anderson, J., Kalra, N., Stanley, K., Sorensen, P., Samaras, C., & Oluwatola, O. (2016).
619 Autonomous Vehicle Technology: A Guide for Policymakers. In *Autonomous Vehicle*
620 *Technology: A Guide for Policymakers*. <https://doi.org/10.7249/rr443-2>

621 Bindschädel, J., Krems, I., & Kiesel, A. (2022). Two-step communication for the interaction
622 between automated vehicles and pedestrians. *Transportation Research Part F: Traffic*
623 *Psychology and Behaviour*, 90, 136–150. <https://doi.org/10.1016/j.trf.2022.08.016>

624 Brown, B., Broth, M., & Vinkhuyzen, E. (2023, April 19). The Halting problem: Video analysis
625 of self-driving cars in traffic. *Conference on Human Factors in Computing Systems -*
626 *Proceedings*. <https://doi.org/10.1145/3544548.3581045>

627 Buchner, J., Buntins, K., & Kerres, M. (2022). The impact of augmented reality on cognitive
628 load and performance: A systematic review. In *Journal of Computer Assisted Learning*
629 (Vol. 38, Issue 1, pp. 285–303). John Wiley and Sons Inc.
630 <https://doi.org/10.1111/jcal.12617>

631 Calvi, A., D'Amico, F., Ferrante, C., & Bianchini Ciampoli, L. (2020). Effectiveness of
632 augmented reality warnings on driving behaviour whilst approaching pedestrian
633 crossings: A driving simulator study. *Accident Analysis and Prevention*, 147.
634 <https://doi.org/10.1016/j.aap.2020.105760>

635 Colley, M., Walch, M., & Rukzio, E. (2020, April 25). Unveiling the lack of scalability in
636 research on external communication of autonomous vehicles. *Conference on Human*
637 *Factors in Computing Systems - Proceedings*.
638 <https://doi.org/10.1145/3334480.3382865>

639 de Clercq, K., Dietrich, A., Núñez Velasco, J. P., de Winter, J., & Happee, R. (2019). External
640 Human-Machine Interfaces on Automated Vehicles: Effects on Pedestrian Crossing
641 Decisions. *Human Factors: The Journal of the Human Factors and Ergonomics Society*,
642 61(8), 1353–1370. <https://doi.org/10.1177/0018720819836343>

643 de Winter, J., Bazilinskyy, P., Wesdorp, D., de Vlam, V., Hopmans, B., Visscher, J., & Dodou,
644 D. (2021). How do pedestrians distribute their visual attention when walking through a

645 parking garage? An eye-tracking study. *Ergonomics*, 64(6), 793–805.
646 <https://doi.org/10.1080/00140139.2020.1862310>

647 de Winter, J., & Dodou, D. (2022). External human–machine interfaces: Gimmick or
648 necessity? *Transportation Research Interdisciplinary Perspectives*, 15.
649 <https://doi.org/10.1016/j.trip.2022.100643>

650 Dey, D., Habibovic, A., Löcken, A., Wintersberger, P., Pfleging, B., Riener, A., Martens, M., &
651 Terken, J. (2020). Taming the eHMI jungle: A classification taxonomy to guide,
652 compare, and assess the design principles of automated vehicles' external human-
653 machine interfaces. *Transportation Research Interdisciplinary Perspectives*, 7.
654 <https://doi.org/10.1016/j.trip.2020.100174>

655 Dey, D., Matvienko, A., Berger, M., Pfleging, B., Martens, M., & Terken, J. (2020).
656 Communicating the Intention of an Automated Vehicle to Pedestrians: the
657 Contributions of eHMI and Vehicle Behavior. *Information Technology, Special Issue: Automotive User Interfaces in the Age of Automation*. <https://doi.org/10.1515/ITIT-2020-0025>

660 Dey, D., Van Vastenhoven, A., Cuijpers, R. H., Martens, M., & Pfleging, B. (2021). Towards
661 scalable eHMIs: Designing for AV-VRU communication beyond one pedestrian.
662 *Proceedings - 13th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2021*, 274–286.
663 <https://doi.org/10.1145/3409118.3475129>

665 Dey, D., Walker, F., Martens, M., & Terken, J. (2019). Gaze patterns in pedestrian interaction
666 with vehicles: Towards effective design of external human-machine interfaces for
667 automated vehicles. *Proceedings - 11th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2019*, 369–378.
668 <https://doi.org/10.1145/3342197.3344523>

670 Eisele, D., & Petzoldt, T. (2022). Effects of traffic context on eHMI icon comprehension.
671 *Transportation Research Part F: Traffic Psychology and Behaviour*, 85, 1–12.
672 <https://doi.org/10.1016/j.trf.2021.12.014>

673 Eisma, Y. B., van Bergen, S., ter Brake, S. M., Hensen, M. T. T., Tempelaar, W. J., & de Winter,
674 J. C. F. (2020). External human-machine interfaces: The effect of display location on
675 crossing intentions and eye movements. *Information (Switzerland)*, 11(1).
676 <https://doi.org/10.3390/info11010013>

677 Faas, S. M., Kao, A. C., & Baumann, M. (2020). A Longitudinal Video Study on
678 Communicating Status and Intent for Self-Driving Vehicle A- Pedestrian Interaction.
679 *Conference on Human Factors in Computing Systems - Proceedings*, 1–14.
680 <https://doi.org/10.1145/3313831.3376484>

681 Gluth, S., Kern, N., Kortmann, M., & Vitali, C. L. (2020). Value-based attention but not
682 divisive normalization influences decisions with multiple alternatives. *Nature Human
683 Behaviour*, 4(6), 634–645. <https://doi.org/10.1038/s41562-020-0822-0>

684 Gluth, S., Spektor, M. S., & Rg Rieskamp, J. (2018). *Value-based attentional capture affects
685 multi-alternative decision making*. <https://doi.org/10.7554/eLife.39659.001>

686 Guo, F., Lyu, W., Ren, Z., Li, M., & Liu, Z. (2022). A Video-Based, Eye-Tracking Study to
687 Investigate the Effect of eHMI Modalities and Locations on Pedestrian–Automated
688 Vehicle Interaction. *Sustainability (Switzerland)*, 14(9).
689 <https://doi.org/10.3390/su14095633>

690 He, J., & McCarley, J. S. (2010). Executive working memory load does not compromise
691 perceptual processing during visual search: Evidence from additive factors analysis.
692 *Attention, Perception, and Psychophysics*, 72(2), 308–316.
693 <https://doi.org/10.3758/APP.72.2.308>

694 Hensch, A. C., Neumann, I., Beggiato, M., Halama, J., & Krems, J. F. (2019). Effects of a light-
695 based communication approach as an external HMI for Automated Vehicles - A Wizard-
696 of-Oz Study. *Transactions on Transport Sciences*, 10(2), 18–32.
697 <https://doi.org/10.5507/TOTS.2019.012>

698 Herten, N., Otto, T., & Wolf, O. T. (2017). The role of eye fixation in memory enhancement
699 under stress – An eye tracking study. *Neurobiology of Learning and Memory*, 140, 134–
700 144. <https://doi.org/10.1016/j.nlm.2017.02.016>

701 Hochman, M., Parmet, Y., & Oron-Gilad, T. (2020). Pedestrians' Understanding of a Fully
702 Autonomous Vehicle's Intent to Stop: A Learning Effect Over Time. *Frontiers in*
703 *Psychology*, 11. <https://doi.org/10.3389/fpsyg.2020.585280>

704 Holländer, K., Hoggenmüller, M., Gruber, R., Völkel, S. T., & Butz, A. (2022). Take It to the
705 Curb: Scalable Communication Between Autonomous Cars and Vulnerable Road Users
706 Through Curbstone Displays. *Frontiers in Computer Science*, 4.
707 <https://doi.org/10.3389/fcomp.2022.844245>

708 Holländer, K., Wintersberger, P., & Butz, A. (2019). Overtrust in external cues of automated
709 vehicles: An experimental investigation. *Proceedings - 11th International ACM*
710 *Conference on Automotive User Interfaces and Interactive Vehicular Applications*,
711 *AutomotiveUI 2019, September*, 211–221. <https://doi.org/10.1145/3342197.3344528>

712 Jacob, R. J. K., & Karn, K. S. (2003). Eye Tracking in Human-Computer Interaction and
713 Usability Research. In *The Mind's Eye* (Vol. 42, Issue 5, pp. 573–605). Elsevier.
714 <https://doi.org/10.1016/B978-044451020-4/50031-1>

715 Kaleefathullah, A. A., Merat, N., Lee, Y. M., Eisma, Y. B., Madigan, R., Garcia, J., & Winter, J.
716 de. (2020). External Human–Machine Interfaces Can Be Misleading: An Examination of
717 Trust Development and Misuse in a CAVE-Based Pedestrian Simulation Environment.
718 *Human Factors, November 2020*. <https://doi.org/10.1177/0018720820970751>

719 Kotval, X. P., & Goldberg, J. H. (1998). Eye Movements and Interface Component Grouping:
720 An Evaluation Method. *Proceedings of the Human Factors and Ergonomics Society*
721 *Annual Meeting*, 42(5), 486–490. <https://doi.org/10.1177/154193129804200509>

722 Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and
723 comparison of value in simple choice. *Nature Neuroscience*, 13(10), 1292–1298.
724 <https://doi.org/10.1038/nn.2635>

725 Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the
726 relationship between visual fixations and choice in value-based decisions. *Proceedings*
727 *of the National Academy of Sciences of the United States of America*, 108(33), 13852–
728 13857. <https://doi.org/10.1073/pnas.1101328108>

729 Lee, Y. M., Madigan, R., Uzondu, C., Garcia, J., Romano, R., Markkula, G., & Merat, N. (2022).
730 Learning to interpret novel eHMI: The effect of vehicle kinematics and eHMI familiarity
731 on pedestrian' crossing behavior. *Journal of Safety Research*, 80(January 2022), 270–
732 280. <https://doi.org/10.1016/j.jsr.2021.12.010>

733 Li, Y., Dikmen, M., Hussein, T. G., Wang, Y., & Burns, C. (2018). To cross or not to cross:
734 Urgency-based external warning displays on autonomous vehicles to improve
735 pedestrian crossing safety. *Proceedings - 10th International ACM Conference on*
736 *Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2018*,
737 188–197. <https://doi.org/10.1145/3239060.3239082>

738 Liu, H., Hirayama, T., Morales Saiki, L. Y., & Murase, H. (2023). Implicit Interaction with an
739 Autonomous Personal Mobility Vehicle: Relations of Pedestrians' Gaze Behavior with
740 Situation Awareness and Perceived Risks. *International Journal of Human-Computer*
741 *Interaction*, 39(10), 2016–2032. <https://doi.org/10.1080/10447318.2022.2073006>

742 Loke, S. W. (2019). Cooperative Automated Vehicles: A Review of Opportunities and
743 Challenges in Socially Intelligent Vehicles beyond Networking. *IEEE Transactions on*
744 *Intelligent Vehicles*, 4(4), 509–518. <https://doi.org/10.1109/TIV.2019.2938107>

745 Lyu, W., Zhang, W., Wang, X., Ding, Y., & Yang, X. (2024). Pedestrians' responses to scalable
746 automated vehicles with different external human-machine interfaces: Evidence from a
747 video-based eye-tracking experiment. *Transportation Research Part F: Traffic*
748 *Psychology and Behaviour*, 103, 112–127. <https://doi.org/10.1016/j.trf.2024.04.005>

749 Madigan, R., Mun Lee, Y., Lyu, W., Horn, S., Garcia de Pedro, J., & Merat, N. (2023).
750 Pedestrian interactions with automated vehicles: Does the presence of a zebra crossing
751 affect how eHMIs and movement patterns are interpreted? *Transportation Research*
752 *Part F: Traffic Psychology and Behaviour*, 98, 170–185.
753 <https://doi.org/10.1016/j.trf.2023.09.003>

754 Mahadevan, K., Somanath, S., & Sharlin, E. (2018). Communicating awareness and intent in
755 autonomous vehicle-pedestrian interaction. *Conference on Human Factors in*

756 Computing Systems - Proceedings, 2018-April.
757 <https://doi.org/10.1145/3173574.3174003>

758 Matviienko, A., Müller, F., Schön, D., Seesemann, P., Günther, S., & Mühlhäuser, M. (2022,
759 April 29). BikeAR: Understanding Cyclists' Crossing Decision-Making at Uncontrolled
760 Intersections using Augmented Reality. *Conference on Human Factors in Computing
761 Systems - Proceedings*. <https://doi.org/10.1145/3491102.3517560>

762 Milton, J. L., Jones, R. E., & Fitts, P. M. (1950). *Eye Fixations of Aircraft Pilots: Frequency,
763 duration, and sequence fixations when flying selected maneuvers during instrument
764 and visual flight conditions* (Issue 6018). United States, Air Force, Air Materiel
765 Command.

766 Moore, D., Currano, R., Strack, G. E., & Sirkin, D. (2019). The case for implicit external
767 human-machine interfaces for autonomous vehicles. *Proceedings - 11th International
768 ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications,
769 AutomotiveUI 2019*, 295–307. <https://doi.org/10.1145/3342197.3345320>

770 Negi, S., & Mitra, R. (2020). Fixation duration and the learning process: an eye tracking study
771 with subtitled videos. *Journal of Eye Movement Research*, 13(6), 1–15.
772 <https://doi.org/10.16910/jemr.13.6.1>

773 Olsen, A. (2012). The Tobii I-VT fixation filter. *Tobii Technology*, 21(4–19), 5.

774 Onkhar, V., Bazilinsky, P., Dodou, D., & de Winter, J. C. F. (2022). The effect of drivers' eye
775 contact on pedestrians' perceived safety. *Transportation Research Part F: Traffic
776 Psychology and Behaviour*, 84, 194–210. <https://doi.org/10.1016/j.trf.2021.10.017>

777 Peereboom, J., Tabone, W., Dodou, D., & de Winter, J. (2024). Head-locked, world-locked, or
778 conformal diminished-reality? An examination of different AR solutions for pedestrian
779 safety in occluded scenarios. *Virtual Reality*, 28(2). <https://doi.org/10.1007/s10055-024-01017-9>

781 Pekkanen, J., Giles, O. T., Lee, Y. M., Madigan, R., Daimon, T., Merat, N., & Markkula, G.
782 (2022). Variable-Drift Diffusion Models of Pedestrian Road-Crossing Decisions.

783 *Computational Brain and Behavior*, 5(1), 60–80. <https://doi.org/10.1007/s42113-021-00116-z>

785 Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2018). Towards Social Autonomous Vehicles:
786 Understanding Pedestrian-Driver Interactions. *IEEE Conference on Intelligent
787 Transportation Systems, Proceedings, ITSC, 2018-Novem*, 729–734.
788 <https://doi.org/10.1109/ITSC.2018.8569324>

789 Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual
790 search. *Quarterly Journal of Experimental Psychology*, 62(8), 1457–1506.
791 <https://doi.org/10.1080/17470210902816461>

792 Salvucci, D. D., & Goldberg, J. H. (2000). *Identifying Fixations and Saccades in Eye-Tracking
793 Protocols*.

794 Schneemann, F., & Gohl, I. (2016). Analyzing driver-pedestrian interaction at crosswalks: A
795 contribution to autonomous driving in urban environments. *IEEE Intelligent Vehicles
796 Symposium, Proceedings, 2016-Augus(iv)*, 38–43.
797 <https://doi.org/10.1109/IVS.2016.7535361>

798 Shimojo, S., Simion, C., Shimojo, E., & Scheier, C. (2003). Gaze bias both reflects and
799 influences preference. *Nature Neuroscience*, 6(12), 1317–1322.
800 <https://doi.org/10.1038/nn1150>

801 Stroup, W. W. (2012). *Generalized linear mixed models: modern concepts, methods and
802 applications*. CRC press.

803 Suzuki, Y., Wild, F., & Scanlon, E. (2024). Measuring cognitive load in augmented reality with
804 physiological methods: A systematic review. In *Journal of Computer Assisted Learning*
805 (Vol. 40, Issue 2, pp. 375–393). John Wiley and Sons Inc.
806 <https://doi.org/10.1111/jcal.12882>

807 Tabone, W., De Winter, J., Deb, S., & Habibovic, A. (2020). *Vulnerable Road Users and The
808 Coming Wave of Automated Vehicles: Expert Perspectives. October*.
809 <https://www.researchgate.net/publication/344657741>

810 Tabone, W., Happee, R., García, J., Lee, Y. M., Lupetti, M. L., Merat, N., & de Winter, J.
811 (2023). Augmented reality interfaces for pedestrian-vehicle interactions: An online
812 study. *Transportation Research Part F: Traffic Psychology and Behaviour*, 94, 170–189.
813 <https://doi.org/10.1016/j.trf.2023.02.005>

814 Tabone, W., Happee, R., Yang, Y., Sadraei, E., García de Pedro, J., Lee, Y. M., Merat, N., & de
815 Winter, J. (2024). Immersive insights: evaluating augmented reality interfaces for
816 pedestrians in a CAVE-based experiment. *Frontiers in Virtual Reality*, 5.
817 <https://doi.org/10.3389/frvir.2024.1353941>

818 Tabone, W., Lee, Y. M., Merat, N., Happee, R., & De Winter, J. (2021). Towards future
819 pedestrian-vehicle interactions: Introducing theoretically-supported AR prototypes.
820 *Proceedings - 13th International ACM Conference on Automotive User Interfaces and*
821 *Interactive Vehicular Applications, AutomotiveUI 2021*, 209–218.
822 <https://doi.org/10.1145/3409118.3475149>

823 Tapiro, H., Borowsky, A., Oron-Gilad, T., & Parmet, Y. (2016). Where do older pedestrians
824 glance before deciding to cross a simulated two-lane road? A pedestrian simulator
825 paradigm. *Proceedings of the Human Factors and Ergonomics Society*, 11–15.
826 <https://doi.org/10.1177/1541931213601003>

827 Tapiro, H., Oron-Gilad, T., & Parmet, Y. (2020). Pedestrian distraction: The effects of road
828 environment complexity and age on pedestrian's visual attention and crossing
829 behavior. *Journal of Safety Research*, 72, 101–109.
830 <https://doi.org/10.1016/j.jsr.2019.12.003>

831 Te Velde, A. F., Van Der Kamp, J., Barela, J. A., & Savelbergh, G. J. P. (2005). Visual timing
832 and adaptive behavior in a road-crossing simulation study. *Accident Analysis and*
833 *Prevention*, 37(3), 399–406. <https://doi.org/10.1016/j.aap.2004.12.002>

834 Thomas, A. W., Molter, F., Krajbich, I., Heekeren, H. R., & Mohr, P. N. C. (2019). Gaze bias
835 differences capture individual choice behaviour. *Nature Human Behaviour*, 3(6), 625–
836 635. <https://doi.org/10.1038/s41562-019-0584-8>

837 Tian, K., Markkula, G., Wei, C., Sadraei, E., Hirose, T., Merat, N., & Romano, R. (2022).
838 Impacts of visual and cognitive distractions and time pressure on pedestrian crossing
839 behaviour: A simulator study. *Accident Analysis and Prevention*, 174.
840 <https://doi.org/10.1016/j.aap.2022.106770>

841 Tian, K., Tzigieras, A., Wei, C., Lee, Y. M., Holmes, C., Leonetti, M., Merat, N., Romano, R., &
842 Markkula, G. (2023). Deceleration parameters as implicit communication signals for
843 pedestrians' crossing decisions and estimations of automated vehicle behaviour.
844 *Accident Analysis and Prevention*, 190. <https://doi.org/10.1016/j.aap.2023.107173>

845 Tong, Y., Jia, B., & Bao, S. (2021). An augmented warning system for pedestrians: User
846 interface design and algorithm development. *Applied Sciences (Switzerland)*, 11(16).
847 <https://doi.org/10.3390/app11167197>

848 Tran, T. T. M., Parker, C., Hoggenmüller, M., Hespanhol, L., & Tomitsch, M. (2023).
849 Simulating Wearable Urban Augmented Reality Experiences in VR: Lessons Learnt from
850 Designing Two Future Urban Interfaces. *Multimodal Technologies and Interaction*, 7(2).
851 <https://doi.org/10.3390/mti7020021>

852 Vinkhuyzen, E., & Cefkin, M. (2016). Developing Socially Acceptable Autonomous Vehicles.
853 *Ethnographic Praxis in Industry Conference Proceedings*, 2016(1), 522–534.
854 <https://doi.org/10.1111/1559-8918.2016.01108>

855 Wilbrink, M., Nuttelmann, M., & Oehl, M. (2021). Scaling up automated vehicles ehmi
856 communication designs to interactions with multiple pedestrians-putting ehmis to the
857 test. *Adjunct Proceedings - 13th International ACM Conference on Automotive User
858 Interfaces and Interactive Vehicular Applications, AutomotiveUI 2021*, 119–122.
859 <https://doi.org/10.1145/3473682.3480277>

860 Yang, Y., Lee, Y. M., Madigan, R., Solernou, A., & Merat, N. (2024). Interpreting pedestrians'
861 head movements when encountering automated vehicles at a virtual crossroad.
862 *Transportation Research Part F: Traffic Psychology and Behaviour*, 103, 340–352.
863 <https://doi.org/https://doi.org/10.1016/j.trf.2024.04.022>

864