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Executive Summary 

The progress in technology development over the past decades, both with respect to software 
and hardware, offers the vision of automated vehicles as means of achieving zero fatalities in 
traffic. However, the promises of this new technology – an increase in road safety, traffic 
efficiency, and user comfort – can only be realized if this technology is smoothly introduced 
into the existing traffic system with all its complexities, constraints, and requirements. SHAPE-
IT will contribute to this major undertaking by addressing research questions relevant for the 
development and introduction of automated vehicles in urban traffic scenarios. Previous 
research has pointed out several research areas that need more attention for a successful 
implementation and deployment of human-centred vehicle automation in urban environments.  

In SHAPE-IT, for example, a better understanding of human behaviour and the underlying 
psychological mechanisms will lead to improved models of human behaviour that can help to 
predict the effects of automated systems on human behaviour already during system 
development. Such models can also be integrated into the algorithms of automated vehicles, 
enabling them to better understand the human interaction partners’ behaviours.  

Further, the development of vehicle automation is much about technology (software and 
hardware), but the users will be humans and they will interact with humans both inside and 
outside of the vehicle. To be successful in the development of automated vehicles 
functionalities, research must be performed on a variety of aspects. Actually, a highly 
interdisciplinary team of researchers, bringing together expertise and background from various 
scientific fields related to traffic safety, human factors, human-machine interaction design and 
evaluation, automation, computational modelling, and artificial intelligence, is likely needed to 
consider the human-technology aspects of vehicle automation.  

Accordingly, SHAPE-IT has recruited fifteen PhD candidates (Early Stage Researchers – 
ESRs), that work together to facilitate this integration of automated vehicles into complex 
urban traffic by performing research to support the development of transparent, cooperative, 
accepted, trustworthy, and safe automated vehicles. With their (and their supervisors’) 
different scientific background, the candidates bring different theoretical concepts and 
methodological approaches to the project. This interdisciplinarity of the project team offers the 
unique possibility for each PhD candidate to address research questions from a broad 
perspective – including theories and methodological approaches of other interrelated 
disciplines. This is the main reason why SHAPE-IT has been funded by the European 
Commission’s Marie Skłodowska-Curie Innovative Training Network (ITN) program that is 
aimed to train early state researchers in multidisciplinary aspects of research including 
transferable skills. With the unique scope of SHAPE-IT, including the human-vehicle 
perspective, considering different road-users (inside and outside of the vehicle), addressing 
for example trust, transparency, and safety, and including a wide range of methodological 
approaches, the project members can substantially contribute to the development and 
deployment of safe and appreciated vehicle automation in the cities of the future.  

To achieve the goal of interdisciplinary research, it is necessary to provide the individual PhD 
candidate with a starting point, especially on the different and diverse methodological 
approaches of the different disciplines. The empirical, user-centred approach for the 
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development and evaluation of innovative automated vehicle concepts is central to SHAPE-
IT. This deliverable (D1.1 “Methodological Framework for Modelling and Empirical 
Approaches”) provides this starting point. That is, this document provides a broad overview of 
approaches and methodologies used and developed by the SHAPE-IT ESRs during their 
research. The SHAPE-IT PhD candidates, as well as other researchers and developers 
outside of SHAPE-IT, can use this document when searching for appropriate methodological 
approaches, or simply get a brief overview of research methodologies often employed in 
automated vehicle research.  

The first chapter of the deliverable shortly describes the major methodological approaches to 
collect data relevant for investigating road user behaviour. Each subchapter describes one 
approach, ranging from naturalistic driving studies to controlled experiments in driving 
simulators, with the goal to provide the unfamiliar reader with a broad overview of the 
approach, including its scope, the type of data collected, and its limitations. Each subchapter 
ends with recommendations for further reading – literature that provide much more detail and 
examples.  

The second chapter explains four different highly relevant tools for data collection, such as 
interviews, questionnaires, physiological measures, and as other current tools (the Wizard of 
Oz paradigm and Augmented and Virtual Reality). As in the first chapter this chapter provides 
the reader with information about advantages and disadvantages of the different tools and 
with proposed further readings.  

The third chapter deals with computational models of human/agent interaction and presents 
in four subchapters different modelling approaches, ranging from models based on 
psychological mechanisms, rule-based and artificial intelligence models to simulation models 
of traffic interaction.  

The fourth chapter is devoted to Requirements Engineering and the challenge of 
communicating knowledge (e.g., human factors) to developers of automated vehicles. When 
forming the SHAPE-IT proposal it was identified that there is a lack of communication of 
human factors knowledge about the highly technical development of automated vehicles. This 
is why it is highly important that the SHAPE-IT ESRs get training in requirement engineering. 
Regardless of the ESRs working in academia or industry after their studies it is important to 
learn how to communicate and disseminate the findings to engineers.  

The deliverable ends with the chapter “Method Champions”. Here the expertise and 
association of the different PhD candidates with the different topics are made explicit to 
facilitate and encourage networking between PhDs with special expertise and those seeking 
support, especially with regards to methodological questions. 

 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 

 

PUBLIC 
  11/106 

Introduction  

According to World Health Organization (2015), 1.25 million people die every year worldwide 
in traffic collisions, including over 25 000 in the European Union. Research shows that over 
90% of traffic collisions are caused by human error. Car automation is considered to be a 
game-changer in the field of transportation. It promises not only safer, but also faster and more 
comfortable way of traveling. However, there is still a long journey ahead of us to reach full 
automation, i.e., when no human intervention is required under any circumstances. 
Furthermore, it is certainly not possible to have fully automated vehicles (AVs) replacing 
human driving vehicles overnight. There will be a long period of transition where AVs will 
coexist with human-driven vehicles. In case of urban roads and streets, the AVs will always 
coexist with vulnerable road users (VRUs) such as pedestrians or cyclists.  

In SHAPE-IT, we aim to facilitate safe, acceptable, and desirable integration of user-centred 
and transparent AVs into the mixed urban traffic environments. To achieve this goal, an 
interdisciplinary approach is necessary. Fifteen PhD candidates are currently working on 
separate but related topics to promote safer traffic environment. We employ theories and 
methods from fields such as engineering, psychology, human factors, ergonomics, 
neuroscience, and computer science for the purpose of bridging links between humans and 
AVs.  

However, along with many advantages, there are also challenges related to the 
interdisciplinary approach. Each discipline stands on a robust body of theoretical background 
and various methodological approaches, and each Early Stage Researcher (ESR) working 
within SHAPE-IT has a different background and knowledgebase. Therefore, in this document 
we try to outline an overview of different methodological approaches, to highlight their 
strengths and weaknesses, and to help the reader to get better oriented in the various 
research methodology employed in SHAPE-IT. Furthermore, we provide a broad knowledge 
about different empirical and modelling approaches, which guide researchers in knowing the 
suitable study design for their research question. Conclusively, for gaining an in-depth 
knowledge of the specific methods, we provide suggest readings at the end of each section. 

The structure of this document is divided into four main chapters. Chapter one focuses on the 
empirical approaches employed in SHAPE-IT. It follows the structure of decreasing ecological 
validity and increasing scientific control. With each step forward in this chapter, the 
experimenter loses certain amount of ecological validity, but also reveals new research 
opportunities. First, we introduce the naturalistic driving studies, followed by on road studies, 
test track studies, and simulator studies. We briefly introduce driving simulators, pedestrian 
simulators, and cycling simulators. The chapter is closed by an overview of types of 
behavioural data we intend to collect in SHAPE-IT. Chapter two introduces several techniques 
and tools available to researchers in SHAPE-IT, which can be applied across the different 
empirical approaches mentioned in chapter one. Interviews, questionnaires, and 
psychophysiological techniques are introduced briefly. These allow researchers to control for 
covariates, collect qualitative data, understand better their experimental results, and also to 
broaden the pool of research questions that can be asked. The end of chapter two belongs to 
an introduction of the Wizard of Oz method and the virtual reality (VR) and augmented reality 
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(AR), which represent further tools that broaden the research possibilities in SHAPE-IT. 
Chapter three introduces the various modelling approaches that will be used in SHAPE-IT to 
understand behaviour of different road users (automated vehicles and vulnerable road users). 
Chapter four is an overview of the Requirements Engineering and its possible application in 
the AV research. Finally, Chapter five introduces the concept of Method Champions, and 
brings an overview of the ESRs and their domain of expertise.  

This document exists thanks to a joint effort of the 15 ESRs involved in SHAPE-IT. As each of 
the ESRs have a different background and field of expertise, the goal is to systematise the 
possibilities emerging from our interdisciplinary approach. We believe that this document will 
be useful not only for our colleagues within the project, but also for external readers who wish 
to get a better understanding of the empirical and modelling possibilities in the vehicle 
automation research.   
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1 Empirical Strategies of Data Collection 

This chapter serves as an overview of empirical approaches employed in SHAPE-IT. This text 
aims to highlight the inverse relationship between ecological validity and scientific control 
(Holleman, 2020) in empirical studies (see Figure 1). While naturalistic driving studies offer 
high ecological validity (data are collected from real vehicles in real traffic conditions), the 
experimenter has very limited options of how to control and/or manipulate the variables. 
Hence, the scientific control of naturalistic driving studies is low. Simulator studies are to be 
found on the other side of the spectrum. High scientific control of a simulator experiment allows 
the experimenter to minimize the effects of variables other than the independent variable. It 
increases reliability of the findings and allows for a replication of the experiment. However, it 
takes a toll on ecological validity of the results. Even in the best simulator, the participant is 
aware that the experiment is “just a simulation”, and it might be difficult to generalize the results 
for other settings (Kaptein, Theeuwes, & van der Horst, 1996). It is important to bear in mind 
that neither of these approaches is superior to the others, but rather it’s a matter of matching 
the right empirical approach to the question that is being asked by the researcher. The current 
state of scientific knowledge and the available technological tools can also impact what 
approach a researcher chooses (e.g., certain problem can be first studied in a simulator, then 
on a test track and/or on road, and further evaluated using naturalistic driving data).  

 

 

Figure 1 The inverse relationship between ecological validity and scientific control of selected 
empirical approaches 

1.1 Naturalistic Driving Studies  

Traffic is a highly complex social system, where different road users interact in shared space. 
Wilde (1976), argues that it is probably difficult to find instances of road user behaviour that 
are completely free from any form of social influence.  Although there has been a considerable 
research to study the road user behaviour, mainly through conventional research methods 
(e.g., driving simulator studies or test track studies). However, these methods are inadequate 
to capture choices that drivers make in everyday situations (Van Nes et al., 2019). In a 

https://en.wikipedia.org/wiki/Independent_variable
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naturalistic driving study (NDS), driver behaviour is studied during everyday trips by collecting 
details of driver, vehicle and surrounding traffic unobtrusively and without any experimental 
control (van Schagen et al., 2011). This way of collecting data ensures the highest possible 
ecological validity. Generally, drivers use their own vehicle and drives in normal manner. The 
vehicle is equipped with a dedicated Data Acquisition System (DAS) which is typically 
comprised of video cameras and other specialised data collection sensors (e.g., CAN, Radar, 
Lidar). A typical DAS is shown the Figure 2 Two extensive projects, involving collection of 
naturalistic driving data (NDD), are the UDRIVE (Van Nes et al., 2019) and SHRP2 (Hankey 
et al., 2016). 

 

 

Figure 2 Typical DAS for naturalistic driving studies 

 

First and foremost, NDD provide deeper insights into driver behaviour during everyday traffic 
situations. The advantage of NDS stems from its highly global perspective, and from there, 
guiding the researchers to focus on the critical aspects. For example, using NDD we can 
categorize driving behaviour into different driving styles or identify risk factors in everyday 
driving (Bärgman, 2016). In addition to that, the NDD is also used to investigate factors that 
contributes to crashes. Using actual crash data from SHRP2, Dingus et al., (2016) found that, 
driver-related factors (e.g., distraction) were present in almost 90% of the cases. In addition 
to that, the NDD is used to understand how driver behaviour affect the safety. The NDD also 
provide meaningful insights into observable impairment. Dingus et al. (2016) categorized 
impairment as (a) drug or alcohol impairment, (b) drowsiness and fatigue and (c) impairment 
caused by emotion (anger, sadness, crying). These statistics offer deeper insight to the 
fundamental issues that can lead to calamities. Moreover, the collection of such data acts as 
guidelines for researchers when designing novel strategies to reduce errors.  

1.1.1 Data  

Video data is the most common, unique, and important component of any typical NDS. The 
video data is collected unobtrusively over a longer time period. Video is useful to understand 
how individual drivers behave in certain situation and how do they interact with other road 
users. Depending on the scale of the study at least one camera facing forward towards the 
road is required. However, large scale studies often have multiple cameras (as shown in 
Figure 3) , both inside and outside of the vehicle.  For example, the UDRIVE study installed 5 
to 8 cameras depending on the type of vehicle. The cameras inside the cars are used to collect 
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data on, facial expressions, view of the steering, view of drivers´ feet to capture use of brake 
and acceleration pedals etc.   

 

 

Figure 3 Typical camera placement for an NDS 

 

The Controller Area Network (CAN) data is the second most important data type after the 
video data. Most of CAN data from a vehicle is available only to its manufacturer, supplier of 
the device, and/or trusted research organizations (Victor et al., 2010). However, the high-
quality CAN data, such as – vehicle speed, 3-axis acceleration, use of brake and clutch, use 
of headlights windshield wiper, ambient light status etc. – is enough for typical ND research 
study. Speed, acceleration and brake pedal data is useful to understand pre-crash behaviour 
of the driver (Bärgman, 2016). While, other forms of data can be useful to understand factors 
that contributes to crashes. Furthermore, additional sensors (e.g., radar) can also be used to 
get some additional information about key features.  

Questionnaires are also part of NDS, which are used to compliment in-vehicle sensor data. 
For example, in UDRIVE project, Van Nes et al. (2019), collected driver demographics, driver 
attitude (Parker et al., 1996) driving style (French et al., 1993), locus of control (Ozkan and 
Lajunen, 2005).  In addition to that basic information about driver, Fridman et al. (2019), also 
collected questionnaires regarding initial impressions, and reported trust in select vehicle 
technologies. They also collected questionnaires to asses reported trust in vehicle technology, 
perceptions of safety and detailed understanding of the system after a month of naturalistic 
driving. 

Although most of the data in NDS are collected using internal sources, some of the data can 
also be collected from external sources. The data from external sources mainly include road 
geometry data (e.g., number of lanes) and the type of road (rural or urban).  
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1.1.2 Limitations 

The large-scale NDS are preferred to investigate human behaviour in everyday traffic 
situations. However, the associated efforts and resources makes it very difficult to conduct 
such studies frequently. Below are the main limitations of NDS.  

One of the main limitations of a NDS is the associated cost and time. NDS require vehicles to 
be equipped with dedicated Data Acquisition System (DAS) comprised of multiple cameras, 
GPS, and other sensors. Since NDS are aimed at collecting data over larger durations, there 
are also costs associated with the maintenance of the equipment. Furthermore, each person 
is also paid incentive for the participation in the study. For example, European NDS UDRIVE, 
paid 800 euros to each participant (Castermans, 2017). The total overall cost of the UDRIVE 
project was over 10.6 million euros.  
 
Data retrieval and storage is another large limitation of NDS.  The first challenge is faced 
during the installation of data acquisition system DAS. The installation and maintenance of 
DAS requires comprehensive training. For example, UDRIVE project developed and 
manufactured dedicated DAS along with comprehensive installation manual (Castermans, 
2017). Another challenge is faced during data retrieval and storage. Since the onboard DAS 
has limited storage capacity, the collected data is downloaded from the onboard DAS and 
transferred to secure storage facility at regular intervals. For a more detailed perspective on 
challenges in data collection please refer to Castermans, (2017), section 7. 

Suggested Reading  

• Bärgman, J. (2016). Methods for analysis of naturalistic driving data in driver behavior 
research. Chalmers University of Technology. 

• van Nes, N., Bärgman, J., Christoph, M., & van Schagen, I. (2019). The potential of 
naturalistic driving for in-depth understanding of driver behavior: UDRIVE results and 
beyond. Safety Science, 119, 11-20. 

• van Schagen, I., & Sagberg, F. (2012). The potential benefits of naturalistic driving for 
road safety research: Theoretical and empirical considerations and challenges for the 
future. Procedia-social and behavioral sciences, 48, 692-701. 

1.2 On-Road Studies 

An on-road study – also a field study – is a broad concept in the field of vehicles and 
transportation. The on-road study approach can be defined as a study under controlled 
operating conditions by using experimental methods to evaluate a function or functions, or to 
investigate how the user/driver reacts to the vehicle and environment, or to research the 
impacts on transportation, environment and society (Barnard & Carsten, 2010). It is similar to 
NDS, but have some significant differences. Naturalistic Driving is a recently developed 
research method, observing road users’ everyday driving behaviour. In an NDS, the subject 
will drive as he or she is accustomed to, without specific instructions or interventions, once the 
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equipment has been installed. Participating drivers use the vehicles during their daily routines. 
Data are automatically recorded and the drivers do not receive special instructions about how 
and where to drive. In most of the cases, there is no experimenter or instructor in the vehicle, 
and on general the naturalistic driving (van Schagen & Sagberg, 2012). An on-road study, on 
the other hand, often comes with specific instructions or interventions. An important 
characteristic of on-road study is that it is a slightly more controlled experiment designed by 
using experimental design method to address specific research questions or hypothesizes. 
Compared to naturalistic driving study, on road studies are often aiming at evaluating certain 
functions such as an assistance system or a driving automation system.  

Over the last decades, a large number of new technologies in vehicles have been successfully 
developed. For many applications, in particular in the field of advanced driver assistance 
systems (ADAS) and AVs, potentials in bring several benefits such as improved safety, 
reduced congestions and emissions, and enhanced mobility are expected (ERTRAC, 2017). 
However, what is not considered in this field is, under real traffic conditions, whether drivers 
will accept these new technologies and react to these new systems in the intended way. This 
might significantly affect the potentials of ADAS and AVs. Therefore, these systems and the 
assumptions on the potentials need to be confirmed in real life. On road study is one of the 
powerful tools to solve this problem. 

In the light of limitations of the NDS, on-road studies offer the possibility to manipulate 
variables. The research questions are defined and specified prior the data collection, contrary 
to ND designs where the approach is mainly based on observations. When collecting the data, 
researchers do not need to obtain excessive amounts of data and can collect only research-
relevant data. Conclusively, the data processing is typically easier compared to NDS. The 
parameters of on-road study design therefore enable us to ask specific questions regarding 
comfort, settings, design, interface, and so forth. Depending on the question, the focus of 
observation can be user-, vehicle-, and/or context cantered. 

1.2.1 Scope 

On-road studies can be categorized in many ways, but one way is to divide them into three 
types of foci:  

• User-centred tests: addressing questions about user/driver reactions to automation, 
the control transition, drivers’ situation awareness, the interaction between automated 
vehicles, their drivers and other road users, user acceptance/perceived safety and 
trust, etc. (Bazilinskyy et al., 2018; Portouli et al., 2007; Stapel et al., 2017) 

• Vehicle-centred tests: addressing the question of how the automated vehicle 
behaves in different traffic conditions, questions about the interaction of the automated 
vehicle with the infrastructure need to be answered (Cafiso & Pappalardo, 2020).  

• Context-cantered tests: addressing questions of how mobility changes, how this 
affects transportation, what ethical choices might be involved, and what would be the 
impacts on the environment and society (Karjalainen et al., 2014). 
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1.2.2 Common Procedure  

As for the test procedure of on-road studies, to what extent the standard test procedures 
should be defined is still under discussion. However, there are several steps of on road 
studies, which can be summarized as follows (Barnard et al., 2016): 

• Defining the study: defining functions, use cases, research questions and 
hypotheses 

• Defining the target group(s): in terms of age, gender, general driving experience, 
experience with specific vehicle functions like automated driving, racing experience, 
being professional drivers 

• Preparing the study: determining performance indicators, study design, measures 
and sensors, vehicle instrumentation, and recruiting participants 

• Piloting the setup and procedures: is everything working out as intended? 
• Conducting the study: collecting data 
• Analysing the data: storing and processing the data, analysing the data, testing 

hypotheses, answering research questions 
• Determining the impact: impact assessment and deployment scenarios, socio-

economic cost benefits analysis 

1.2.3 Data 

Trajectory data: path, velocity and acceleration of ego vehicle can be easily collected. 
Presence and motion of surrounding traffic can be gathered when access is obtained to the 
perception data of the vehicle or when such functionality is retro-fitted using commercially 
available or in-house designed sensor kits.  

Driver’s behaviour data: operation signal (steering wheel position, gas/braking pedal 
position) may be extracted from the vehicle, eye tracking data, hands/feet position, and 
physiological data require additional instrumentation and processing/annotation efforts.  

The most important advantage is that on-road studies can provide fidelity and realism, 
compared to for example driving simulator studies, which makes the transfer of the results to 
actual traffic easier. Although the simulators become more and more advanced and realistic, 
the validity of it is still criticized. On-road experiments can directly evaluate certain functions 
such as an assistance system or a driving automation system in the actual environment in 
which it is intended to be used as a final product. It is therefore concerned with real-life 
manoeuvres and observations, which means that the ecological validity is satisfactory high as 
compared to simulator studies (see Figure 1), and allows researchers better scientific control 
than NDS.  

1.2.4 Limitations 

On-road studies involve observation in real-life environment, though slightly more controlled 
than in NDS. Though the validity is high, there still remain questions that are not easily 
answered. Using vehicles instrumented with technologies that are not proven on the road will 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 

 

PUBLIC 
  19/106 

not only be costly in terms of time and money, but also risky. For instance, the researchers 
cannot simply install a camera and wait for a collision to happen in order to understand the 
cognitive workload and the outcome behaviour of the driver. In this regard, on-road studies 
lack flexibility and the pool of questions to be asked is fairly small. The limitations are mainly 
due to the absolute condition of making sure the participant is safe. Other non-suitable 
questions for on-road study design implementations are precursors to crashes, such as fatigue 
or mind-altering substances (drugs, alcohol), and evaluation studies of new human-machine 
interface (HMI) designs that may alter safety. 
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1.3 Test-Track Studies  

From the last section we learned that, compared to NDS, an on-road study offers the possibility 
to manipulate variables to collect driver behaviours or human-AV interaction. But when there 
are surrounding traffic, it is still far from being a controlled experiment. Thus, the level of 
manipulation remains constrained. To solve this problem, test-track studies are often 
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considered an appealing candidate. Ranging from an intersection to a small town, test-tracks 
are highly controlled environments that could be used to collect data about driver behaviour, 
human-AV interactions, or the road infrastructure. Since all the traffic participants involving in 
the experiments are controllable, risky situations could be easily avoided and consistency on 
independent variables maintained throughout the experiment. Therefore, a great variety and 
combinations of traffic scenarios and participants can be set up in test track experiments in a 
safer way. Participants can be ranging from pedestrians, cyclists, drivers, or other road users 
in interaction with all sorts of vehicles (e.g., manually or automated vehicles trucks, trams). In 
a way, test-tracks could be said as being a simulation of a fraction of a traffic scenario, that is 
conducted in a safer manner. 

Additionally, all sorts of traffic scenarios can in principle be realized, e.g., different types of 
intersections, highways, rural and urban traffic scenarios (Albert et al., 2015; Boda et al., 2018; 
Kundinger et al., 2020; Lotz et al., 2020; Szalay et al., 2018). Of course, this depends on the 
characteristics and the topography of the test-track area. Compared to real traffic situations, 
test-tracks are in more confined areas, with all interaction between traffic participants 
controlled and safety assured. Despite the lack of complex interactions existing in the real 
traffic, the better repeatability and data collection still make test-track study a compelling 
method in studying human-AV interaction. In addition, kinematic cues and risks are still 
perceivable to participants in test-track studies, which in turn enable researchers to acquire 
results more comparable with real-traffic. Conclusively, test-track studies offer minimum risks 
and at the same time offer a higher realm of manipulation in variables, compared to for 
example driving simulator studies, which enable us to answer a variety of questions. That is, 
depending on the specific question, different types of studies can be applied. 

1.3.1 Types of Test-Track Studies 

In AV research, the studies can be divided in two major categories: (a) studies using a 
functional prototype of a realistic automated vehicle (e.g., Albert et al., 2015; Kundinger et al., 
2020), and (b) studies using a regular vehicle operated by a “wizard” who controls the vehicle 
(e.g., Habibovic et al., 2018; Poisson et al., 2020). Compared to on-road studies, test-track 
broadens the possibilities (e.g., by studying situations that could be dangerous in real traffic) 
while maintaining low risk ratio. For example, it would be contra-intuitive to allow participants 
to drive in a real-life traffic after spending a wakeful night as it clearly compromises safety. 
Kundinger and colleagues (2020) measured the effects of drowsiness in relationship to manual 
and automation driving modes. The test-vehicle was equipped to serve as a Level 2 
automation. While measuring subjective KSS (Karolinska Sleepiness Scale) levels of 
drowsiness, researchers found that participants were drowsier in automation compared to 
manual driving. This could be explained by monotony of observation (Körber et al., 2015). On 
the other hand, while moving higher in automation level it seems to be that participants rather 
prefer to put as many tasks as possible to the AV, which suggests a raise in comfort level and 
trust in the system (Albert et al., 2015). Studying different level of automation and evaluating 
driver experience might therefore be very insightful when assessing trust and pre-conditions 
of trust in AV. In another study, Habibovic et al. (2018) examined whether the concepts of 
automated vehicle interaction principle (AVIP) showed by the external human-machine 
interface (eHMI) on the windshield could be correctly interpreted by pedestrians that were 
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about to cross the road. In the experiments, the AVIP was installed on the oncoming vehicle 
that was driven by a driving wizard acting as a passenger on the passenger seat, while on the 
driver seat was a fake driver with a steering wheel that was not functionable. The results 
suggested that after some trainings, most of participants were able to successfully interpret 
the signal of AVIP, and also felt more calmly when interacting with automated vehicles 
equipped with AVIP. 

1.3.2 Data Collection 

Most research regarding AVs focus on the behaviours of drivers, pedestrians or passenger. 
That is, all sorts of interactions between humans and AVs. In order to gather experiment 
results that is comparable to real traffic, on-road experiments are usually performed to serve 
this purpose. However, due to the lack of repeatability and multiple uncontrollable factors in 
real traffic, on-road studies are challenging to perform. As for the driving simulator, which is 
easy to set up and to control all parameters, it is argued that the lack of perceived risks and 
motion cues have impact on driver behaviour data (Boda et al., 2018; Poisson et al., 2020). 
What lies in between is the test-track studies. The collected data in test-track studies provide 
better ecological validity than in driving simulator with the risks and motion cues perceived, 
and is collected in a more controlled environment than on-road studies. If the data-analysis 
results from a test-track study meets the hypotheses and requirements, then the same 
research questions and procedures can be implemented in a real traffic environment for better 
ecological validity. If, however, the hypothesis is nullified, then a revision can be made and 
possibly even refined in a lower-level reality, i.e., simulator-based environment. Test-track 
studies are therefore appreciated when the research question resolves around obtaining valid 
subjective measures. With regards to objective measures, such as measuring response times 
and studying operating manoeuvres, test track design is typically good, but it is often not 
possible to create the truly naturalistic responses (e.g., response times) which would occur in 
real world settings. Conclusively, data from test-track studies may differ from data-collection 
in a naturalistic study as we expect different driving behaviour when the agent is safe contra 
not safe. 

1.3.3 Limitations  

Test-track studies would fall in-between the two ends of the spectrum; they are relatively high 
in both ecological validity and scientific controllability, compared to on-road studies. On the 
one hand, these are the advantages of test-track studies; on the other hand, these could also 
be a blindfold, making researcher oversee the fact that it is still some distance away from real 
implementation. The test-tracks used in research are often simplified: most of them are either 
a simple unsignalized intersection or a continuous circular track (Habibovic et al., 2018; Albert 
et al., 2015). Also, interactions between traffic participants in real world are often more 
complicated, with multiple participants interacting with each other. Despite being a method 
with high ecological validity, further research is needed that compare test-track studies to real 
traffic (Poisson et al., 2020; Habibovic et al., 2018; Feng et al., 2020). Another important factor 
to acknowledge is the safety aspect. It is very likely that participants behave differently in a 
safer environment than in the real-world (e.g., when encountering a dummy or a balloon car).  
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While test-track studies offer real driving experience, it is also the case that the environment 
is controlled enough, i.e., that all measures for safety are accounted for (as far as possible). 
In one experiment, Weinbeer and colleagues (2017) demonstrated that participants, while 
drowsy, where still able to respond accurately to a take-over scenario. The study was 
conducted on a real highway in Germany which might suggest that humans are more alert 
when the safety is compromised. However, it should be noted that the request to intervene 
was rather a simple. Though test-track studies offer real life experience, it is only from a narrow 
perspective. The reason is because test-tracks are not designed to simulate complex driving 
scenarios with the wide range of any complex urban environment. This seem to limit the types 
of questions that can be answered through this type of design. 

Suggested Reading   
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do test track and driving simulator compare? Accident Analysis & Prevention, 111, 
238-250. 
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A., ... & Larsson, P. (2018). Communicating intent of automated vehicles to 
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• Kundinger, T., Riener, A., Sofra, N., & Weigl, K. (2020, March). Driver drowsiness in 
automated and manual driving: insights from a test track study. In Proceedings of the 
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1.4 Studies Conducted in a Simulator  

Fundamentally, a simulation is a representative model of a real-life scenario – as far as 
possible within the constraints of the simulator used. It is used to investigate issues that are 
otherwise impossible to address under their respective natural circumstances Chang (2015). 
Simulator studies are exceptionally beneficial for studying critical situations, from which, new 
HMI or eHMI strategies arises. 

Studies are conducted in highly controlled environments in order to answer questions that are 
limited by previous mentioned methods. Human Factors research is, for example, very 
interested in the behaviour of the driver or vulnerable road users (VRUs) during various 
conditions, such as dense/complex traffic environment, zebra crossing, lane change, 
intersections, severe weather condition and altered states of consciousness (i.e., alcohol, 
drugs) (Wang, Li, & Lu, 2014). These conditions, amongst other, can be studied interrelatedly 
or separately and create a large variety of complexities. Research has repeatedly shown how 
cognitive factors are hyperlinked and this creates complexities on many levels of analysis 
which ultimately give rise to further questions regarding the interaction with automated 
systems. Collecting massive data on driver performance and VRU behaviour is therefore key 
to understand traffic psychology and allows for some prediction models. 
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To investigate the relationship between various cognitive aspects and driving, and/or VRUs, 
researchers in this field have introduced terms such as situation awareness (SA), take-over 
request (TOR), take-over-time (TOT), response time, time to collision (TTC), cueing, 
feedback-loop, non-driving related task (NDRT), out-of-the-loop problem and so forth. 
Studying these key-terms enable researchers to assess the necessary information needed for 
the driver/VRU to make the right judgements. Ultimately, researchers in this field aim to reach 
a consensus regarding these technicalities in order for the industry and policy makers to move 
in the right direction (providing larges positive impact on, e.g., safety). Situation awareness, in 
particular, has been used since the very beginning of research in this field and has influenced 
many guidelines with respect to TOR (for the driver) and better judgement (for a VRU) (Dey 
et al., 2020). 

Investigating the domain of human cognition in an applied interdisciplinary approach is a 
challenge and must be done with caution. As simulator studies offer the possibility to control 
the environment to very high degree and to measure various aspects of behaviour in a very 
detailed way, simulators allow to investigate causal relationships between theoretical concepts 
and external factors. This means simulator experiments may provide a high internal validity of 
their results compared to more realistic settings that are less controlled. The downside of this 
characteristic is that it also makes the experiment very contextual and narrowed, as is true for 
any highly controlled experimental study. This results in specific answers to specific questions, 
but they do offer us the opportunity to study cognition and behaviour under circumstances that 
are otherwise impossible to conduct in real-life. In a simulator, we can generate a near-crash, 
or even crash scenarios to get insight on humans’ ability to cognitively process information 
and how decisions are made accordingly. This in turn provides us with opportunities to make 
hypotheses about, for example, danger-zones when the VRU/driver is facing a potentially fatal 
traffic situation. Critical situations are thus only possible in simulator-based studies (and, 
possibly, test-track studies with, for example, non-human VRUS, such as dummies) as these 
are safer for the participant and offer great deal of understanding of the mind’s eye in all 
possible driving scenarios (but typically a very specific scenario for each individual study). By 
gathering data from simulator studies, researchers are able to make predictions about human 
behaviour in real-life traffic. Nonetheless, the journey is yet ongoing and we need more 
collaboration between engineers and human factors specialist in order to offer safe and 
trustable automation in traffic (Chang, 2015). 

1.4.1 Driving Simulators  

Driving simulators are sophisticated tools that are used frequently today as we are in the pre-
phase of self-driving car era. An instrument can be defined as a driving simulator based on 
two aspects; one is that the study should reflect participants’ perception and behaviour toward 
how the instrument operates, and the other one is that the instrument should be able to 
simulate the concerned driving situation in a similar way in terms of input and output (Fox, 
1960).  



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 

 

PUBLIC 
  24/106 

 

Figure 4 One of the most technically advanced motion-base high-fidelity simulator in the world 
today, available at the University of Leeds 

There are several benefits of employing a driving simulator, for example: (1) a driving 
simulator is regarded as a safe place for human drivers to experience simulated automated 
driving; (2) it typically requires less resources (e.g., time, money and researchers’ effort) but 
is more achievable and efficient compared with on-road experiments or test-track studies, 
which require technical realization or prototyping of the autonomous driving (with an 
exception when employing the Wizard of Oz method, which is discussed in another section); 
(3) it allows more experimental control from the experimenters so that results obtained can 
be targeting proposed research questions and hypotheses (Bellem et al, 2017; Fox, 1960). 
In sum, driving simulators offers great potential in simulating traffic scenarios that would be 
dangerous to implement in real-life. In this a highly controlled environment, novel ideas and 
domain-specific research questions are easily assessed. 

 

  

Figure 5 Fixed-base driving simulator with 190° field of vision, available at the Ulm University 
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1.4.1.1 Tools  

A variety of driving simulators with different complexities or fidelity exist (see the review of 
Václav et al., 2017). Some simple simulators are only used to elicit human responses to 
specific driving situations, for example, driving simulation presented on one display, or 
participants playing video-game-like driving tasks (e.g., Morton & White, 2013). With medium 
fidelity, the driving simulator may be equipped with a car-like cabin and large displays 
providing wider field of view (e.g., Eriksson et al., 2013). A driving simulator with high fidelity 
is regarded as more realistic with larger film screens and has at least 180° field of view (FOV). 
Rear viewing can be achieved with simulated rear-mirrors (e.g., Antonson et al., 2009; Louw 
et al., 2019). When the driving simulator is built closer to the real settings, the ecological 
validity of the simulation will increase. Yet, the high-fidelity driving simulator is very expensive 
and may not be necessary depending on the research purpose (Fox, 1960). 

1.4.1.2 Data  

Drivers’ manual driving behaviour 

Data about how drivers operate the vehicle during manual driving when they are totally in 
control can be obtained. Examples include the number of errors the driver made, subjective 
feedback, detailed driving operations relevant to accelerator, brake pedal, steering, etc., 
detailed vehicle kinematic data like speeding, turning, stopping etc. One example in the AVs 
context is the study of Louw et al. (2019); They studied drivers’ speed choice when they were 
exposed to different road contexts leading to various risk levels. Road environments (e.g., 
presence of oncoming vehicles, roadside furniture, persistence of roadside risky elements 
etc.) were simulated in the high-fidelity University of Leeds Driving Simulator. These manual 
behavioural data could be used to build more human-like autonomous vehicle controllers. 

Drivers’ reaction to automated driving 

Several studies using driving simulators have been conducted to understand human drivers’ 
perceptual and behavioural reactions to automated driving. Partially automated vehicles need 
the driver to take over control in some case while the driver’s attention might not be in the 
driving task. Research questions, like how quickly the driver can accomplish the transition 
from the vehicle being in control to manual driving, how attention of the driver is allocated, and 
what the influence of non-driving activities are and so on, have been raised and examined in 
driving simulators (e.g., Melcher et al., 2015). 

The driving styles of highly automated vehicles have been reported to influence human 
occupants’ comfort, perceived safety and trust (Bellem et al., 2018; Paddeu et al., 2020; 
Rossner & Bullinger, 2020). Different automated driving styles have been simulated. For 
example, participants were exposed to the different automated driving algorithms, whereafter 
they reported their feelings toward the autonomous driving styles (e.g., assertive versus 
defensive in Yusof et al., 2016). Besides subjective measurement, other physiological data of 
the driver can be collected in driving simulators, for instance, head movements, brain activity, 
electrodermal skin responses etc (e.g., Radhakrishnan et al., 2020).  
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User test for internal HMI design  

HMI is a key factor in this field of research as it is critical to have a clear and straightforward 
communication between the driver and the AV. New strategies are tested frequently in order 
to find the most suitable two-way (driver-vehicle) communication technique. Some novel 
internal Human-Machine Interface designs have been tested in driving simulators, for 
example, head-up display (Liu, 2003). HMI research is safely evaluated in simulator studies 
before implementing it in real-life.  

1.4.2 Other Simulators 

1.4.2.1 Pedestrian Simulators  

While pedestrians are vulnerable in urban traffic, the application of future AV can help monitor 
and assist their safe interactions with the potential to reduce the road injures. However, to 
which extent the AV is designed to understand and communicate with the pedestrian in a safe 
manner is unknown and how to improve this capability is still a major concern. Pedestrian 
simulators are therefore widely applied in this pre-stage of AV development and application 
through tracking the pedestrians’ performances in virtual tasks experiencing various 
interaction configurations with controlled variables regarding the AV design. It evaluates the 
efficacy of AV and pedestrian communication in a safe and low-cost space with more complex, 
controlled and flexible scenarios. Meanwhile, it assesses the feasibility of external interfaces 
and perception of pedestrian towards AV, regarding their trust, acceptance and user 
experience. When pedestrians cannot reply on the explicit communication such as gestures, 
waving and eye contacts from the drivers, the inability of AV communicating its intents timely 
and efficiently could give rise to the risky consequences. By applying the pedestrian 
simulators, the imitated real-world interactions address these safety concerns thus assuring 
the pedestrian's safe interactions with AV.  

Apart from the benefits mentioned above, controllability is the main advantages of the 
pedestrian simulators, when the virtual scenes can be built up and modified according to the 
variables in high experimental control. Data richness and quality is also a highlighted benefit 
when simulator enables the easier and quicker manner to gather timely data regardless the 
complicated and hazardous situations it could be in real world.  
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Figure 6 The Highly Immersive Kinematic Experimental Research (HIKER) lab, which is the 
largest ‘CAVE-based’ pedestrian simulation environment of its type in the world, available at 
the University of Leeds  

1.4.2.1.1 Data  

Behavioural data 

In a pedestrian simulator, pedestrian crossing is the most common use case for studying the 
safe AV/VRU interactions. To better understand their decision-making process in the 
interactions, the classical behaviours data including average waiting time, average crossing 
time, average distance to collision, average time to stop, average jaywalking time, average 
crossing speed are collected. Further, the behaviour reflecting different decisions such as 
movement trajectories and route choices, are recorded. Additionally, the behaviour data 
combining the time series analysis and safety measurements assessment is gathered to 
present a more holistic reflection of pedestrian behaviours, such as time to arrival (TTA), time 
to collision (TTC), deceleration to safety time (DST), and post-encroachment-time. Learning 
from driver simulators, the eye tracking and the glances data are often recorded to assess the 
interactions. Moreover, head rotation, crossing initiating time (CIT) and hesitancy are also 
taken into consideration when conducting pedestrian simulations based on the research 
questions and variables.  

Use test for external HMI design 

Use test is the process of investigating the functions of an interface via testing with the users 
who will be asked to perform tasks in upfront designed scenarios. In order to evaluate the 
efficacy of external AV interfaces, use tests among pedestrians are conducted through 
techniques and followed by a user experience questionnaire. For example, Walker et al. 
(2019) designed a slider for pedestrians to show their willingness to cross over different 
external interfaces design. Additionally, the acceptance, trust and user experience of 
pedestrian can also be measured through the use test for an optimal AV external interface 
design. 
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Psychological and self-report data 

In addition to the behaviour measurements, psychological data is also often, in AV research, 
collected through the self-report questionnaires in relation to the perceived safety, trust, 
acceptance and overall experience. Researchers often use, for instance, trust in automated 
systems questionnaire (Jian, 1998), perceived intelligence scale (Bartneck et al., 2009), 
usefulness and satisfaction scales from system acceptance scale (Van der Laan et al., 1997). 

1.4.2.1.2 Tools   

In the early time of investigation pedestrian behaviours, the researchers have been limited to 
the field studies and accident analysis since the experiments in real world are rare for the 
potential risks (Dietrich et al., 2018). Nowadays, new tools are emerging making pedestrian 
safe simulations accessible under the development of the technology. And this section will 
introduce these tools in a progression order. 

VR technology 

Pedestrian simulations are to date mainly based on VR technologies with motion tracking, 
monitoring pedestrian’s intentions to cross. In VR simulations, pedestrians face a screen 
(typically a screen surrounding the pedestrian) showing the road scenarios in relation to which 
the pedestrian is to conduct the task of the study, such as pressing a button or verbally 
indicating the willingness to cross (Oxley et al., 2005). Further, Velde et al. (2005) conducted 
a crossing experiment by directing participants to cross the virtual road physically for the first 
time, introducing the exploration of physical interactions using VR simulators.  

Head-mounted display (HMD) 

The head-mounted display (HMD) simulator is a monoscopic display device worn on head. An 
HMD setup provides an unlimited field of regard (FOR) but a restricted field of view (FOV) 
(Dietrich et al., 2018). For example, the first HMD setup built by Simpson et al. (2003) can only 
provide a horizontal field of view (FOV) of 48°. However, the application of HUD enables the 
interactions to happen in the simulations by enabling the illusion of stereoscopy thus collecting 
more sorts of data like the head rotation and eye tracking.  

CAVE-like device 

The CAVE-like device (cave automatic virtual environment) was proposed when the research 
institute IFSTTAR enhanced their simulator. They used ten rear projections screens 
surrounding the pedestrians on the edge of virtual street with 180° FOV and 300° FOV for 
those in the middle.  

Motion tracking 

As pedestrian simulation laboratories have evolved, and new simulations have been created, 
more up-to-date tools have been used, including a control centre, motion capture cameras 
and system, high resolution HMD, self-developed motion suit, etc. Meanwhile, pedestrian 
avatars in the virtual world have been enhanced, using motion capture data with functional 
software and algorithms in the simulation. 
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1.4.2.2 Cycling Simulators  

As shares of cyclists in urban areas have increased in the recent years, the use of cycling 
simulators to study cyclist behaviour has become more relevant (Herpers et al., 2008; Lee et 
al., 2017; Nazemi et al., 2019; O’Hern et al., 2017). Using a cycling simulator to study 
behaviour ensures a safe laboratory environment to test and evaluate data from AV-cyclist 
interaction, eHMI designs and road infrastructure design along with cyclists’ reaction to future 
scenarios with AVs. 

The, to date, most common approaches of research into human factors aspects of cycling 
have employed either subjective or objective measures to study the effect of different 
individual and environmental factors on cyclists’ perception. The subjective measures were 
mainly obtained from surveys such as self-report data (Lawson et al., 2013; Abadi and Hurwitz, 
2018). While objective measures are obtained from exiting spatial data or field audits 
(Schepers et al., 2011). However, the advancement in technology has opened the new 
opportunities to study cyclist's behaviour in a virtual environment using cyclists' simulators. 
For example, Nazemi et al., (2018), used cycling simulator to study the effect of road 
infrastructure design and environment properties on cyclist’s perceived safety.  

The ease of designing new scenario and controllability in cycling simulators allows us to collect 
data which was impossible otherwise. For example, using cycling simulator, it is possible to 
study how the presence of autonomous vehicles will affect the perceived safety of cyclists. 
Furthermore, by using physiological measures such as EEG, ECG and eye tracking we could 
study cyclists’ internal states (e.g., cognitive workload, emotions, attention, and situational 
awareness).  

1.4.3 Limitations of Simulator Studies 

So far, this report has introduced various methods to acquire empirical data, all of which offer 
solutions to the pre-mentioned section, but poses further limitations. Simulator studies are no 
exception to this rule. When designing simulation-based studies, it is important to understand 
that the conclusions are bound to the experimental design and cannot be taken for granted 
(i.e., to assume that a certain behaviour will be the same even in real-life scenario). The risk-
free simulation environment may deprive the subconscious reactions in hazardous situations 
thus making them less comprehensive and reliable. In simulator studies, participants may act 
in much different ways as compared to real-life situations. This of course is one major problem 
with simulator studies. This gap, that sets us out of reality, can be reduced to a certain degree 
by improving the feeling of reality.  

Another general issue with simulator studies is the simulator sickness. This syndrome, similar 
to motion sickness, can be experienced during or after exposure to simulated environments. 
It often leads to symptoms such as dizziness, fatigue, difficulty concentrating, fullness of head, 
anxiety, and nausea. The symptomatology and severity of the malaise depends on many 
variables (e.g., age, gender, stress, anxiety), however, the severity of the symptoms usually 
increases with increased exposure time (Dużmańska, Strojny, & Strojny, 2018). Several 
theories explaining simulator sickness were formulated. The most prevalent theories in 
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literature are the Sensory Conflict Theory (Reason and Brand, 1975) and the Postural 
Instability Theory (Riccio and Stoffregen, 1991). 

Driving simulator studies come with several drawbacks. The main concern is whether or not 
the simulator study is able to provide as reliable and valid results as on-road studies 
(Shechtman, Classen, Awadzi & Mann, 2009). This issue is related to validity concerns of the 
driving simulator including physical validity and behavioural validity. Physical validity describes 
how capable a driving simulator is in terms of reproducing the physical environment (Blana, 
1996), and can be compared to ecological validity. Behavioural validity means how driving 
behaviours responding to the simulated world match with that in the real world (Mullen, 
Charlton, Devlin & Bedard, 2001). As settings (e.g., parameters) of simulators employed in 
different studies vary, the specific research questions and corresponding designed driving 
tasks influence behavioural validity (Bellem et al., 2017; Mullen et al., 2001). On one hand, 
based on studies conducted in the driving simulator, some resulted insights have been proved 
to have satisfactory behavioural validity. For example, driving comfort, an important subjective 
experience to acceptance and trust of AVs, has been investigated if it can be studied in the 
driving simulator. Bellem et al. (2017) compared participants’ comfort responses collected 
from the simulator and a test-track study.  They have confirmed consistence of these comfort 
evaluations under specific simulator configurations (i.e., with proper lateral and longitudinal 
motion scaling factors). On the other hand, a study conducted by Boda and colleagues (2018) 
showed behavioural differences between participants performing the experimental task in the 
driving simulator contra those who performed it in a test-track. While approaching an 
intersection, a bicycle would cross. It was observed that participants in the driving simulator 
released the gas pedal much quicker after spotting the bicycle, than participants in the test-
rack group. This might though be explained by lack of sensory cues (e.g., engine, kinematics 
(Hoffman et al., 2002), Researchers further analysed behaviour in terms of proactive 
(releasing gas pedal before spotting bicycle) and reactive (releasing gas pedal after spotting 
the bicycle) attitudes; and saw that drivers were 4 times more prone to be proactive in the 
simulator than in the test-track (Boda et al., 2018). One behavioural response however, 
seemed to be rather consistent between simulator and test-track environment. Boda and 
colleagues (2018) claims that brake onset was very similar between the two groups. This is 
useful as it suggests that behavioural data are not always merely bound to its environment 
and that it can indeed be some overlaps between different methodological approaches. 

As for pedestrian simulators, the size of the simulator screen will limit the field of regard (FOR) 
in a CAVE-like simulator, and the HMD will limit the FOV as the limitations of the pedestrian 
simulator setting up (Dietrich et al., 2018). Meanwhile, the pedestrian behaviour and 
perception differ from physical world from the virtual environments, when they make crossing 
decisions based on temporal distances (real world) other than spatial distances (virtual test) 
of approaching vehicles (Feldstein & Dyszak, 2020), the pedestrian simulator is therefore 
critical in its behaviour validity.  

Apart from motion sickness due to the lack of physical forces, physical resistance is a 
challenge for implementation of bicycle simulators. Technical limitations of bicycle simulator 
hardware and software may cause the bike to react too slow when adjusting pedalling 
resistance, and acceleration of the wheels, pedalling or braking may not match biking in the 
virtual environment (Schramka et al., 2017). Paired with technical limitations of VR hardware, 
the lack of realism is a limitation of simulator studies in general. 
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1.5 Types of Empirical Data Collected in SHAPE-IT 

As SHAPE-IT research focus on human interaction with AV, the behavioural data we will 
collect in the SHAPE-IT project include the behavioural data of drivers inside AV and of VRUs. 
We plan to have several simulator studies, test track experiments and on-road experiments to 
collect different types of behavioural data. The summary of the behavioural data is classified 
into drivers inside the AV and VRU interacting with AV. 

A short description of the different empirical approaches, simulator, test-track, and on road 
experiments will be explored. We aim to answer the following questions: what is the data to 
be collected, how it should be collected (equipment, for example), and why it should be 
collected. 

1.5.1 (Automated) Vehicle-Driver Interaction Data 

In the past years, Human-Machine Interaction has become a well-established field, which has 
fostered insightful research approaches and parameters when collecting relevant and useful 
data for the progression of the field. As a result, the prevalence of the science of human factors 
in user centred data collection and behaviour interaction techniques have given rise to a new 
but related approach: the use of behavioural data to understand and make assumptions about 
drivers/users’ interaction patterns with automated vehicles. We argue that behavioural data 
give rise to new opportunities for human-machine interaction designers and analysts, as we 
move towards automated vehicles in urban environments. With the advent of massive new 
tools and techniques with which to collect, manipulate and analyse behaviour data, there is a 
need to scrutinise these tools or equipment in more detail, especially within SHAPE-IT. 

In this project, we explore behaviour data collection as simply a collection of humans’ driving 
behaviour information when interacting with an automated vehicle, but when it is combined 
with external variables – such as VRU behaviour (see section 1.5.2); it takes a holistic 
approach to understand how humans interact with automation, internally and externally. The 
interaction between these three concepts (driver – AV – VRU) gives rise to the demand for 
the collection of human behaviour data in human-machine interactions using simulator 
experiments and/or real-life experiments, among others. As a result, this type of data is quite 
important as it helps to improve the interaction between humans and automated vehicles, 
enhance safety assurance, and generate a comfortable experience, as well as foster trust and 
acceptance between humans and machines. 

Accordingly, Table 1 presents examples of types of behaviour data that will play a major role 
in SHAPE-IT. Note, however that this list does not include all data to be collected in the 
duration of the project, not the least since research is a dynamic process were, for example, 
findings early in a project lead to modified study plans. Thus, it should be taken as a mere 
starting point (examples) to provide a rough overview for the SHAPE-IT ESRs planning their 
first studies. 
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Table 1 SHAPE-IT behavioural data examples 
Type of data Description Research procedure How it should be 

collected (e.g., 
equipment) 

Why it should be 
collected (e.g., its’ 
importance) 

Gas/braking pedal 
position 

This involves 
information about how 
the driver brakes or 
pumps for gas while 
driving 

The research process 
may include the 
collection of data on 
driver’s performance 
in a driving simulator. 
 

This information can 
be collected using a 
camera setup inside 
the vehicle in order to 
monitor drivers’ 
braking-performance, 
reaction time and 
response time, and 
eye-movement. 

This information is 
important as it helps in 
understanding how 
drivers can reach 
efficiency with AVs. 

Braking acceleration, This involves the 
drivers’ tendency to 
brake acceleration 
when driving 

The research process 
may include the 
collection of data on 
driver’s performance 
and perceived safety 
ratings in a driving 
simulator, and 
possibly on-road 
experiment in order to 
evaluate these 
factors. 

This information can 
be collected using a 
camera inside the 
vehicle connected on 
the brakes. This may 
also include eye-
tracking techniques or 
equipment. 

This information is 
important as it helps in 
understanding take-
over effects when 
driving. 

Steering angle and 
lateral acceleration 

This involves 
information about the 
steering styles of the 
driver while driving 

The research process 
may include the use of 
an output of the 
simulator (braking 
intensity and times, 
steering wheel angles, 
perhaps lateral 
acceleration, etc.), as 
well as evaluate 
drivers’ behaviour in 
the form of 
observations and 
checklists. 

This information may 
be collected using a 
camera inside the 
vehicle. An eye-
tracker can be used to 
observe where drivers 
look (e.g., did he look 
in the rear-view mirror 
before changing 
lanes). 

This information is 
important as it helps in 
understanding the 
effects that influence 
steering pattern and 
acceleration during 
driving. 

Lane changing 
response 

This involves 
information about how 
the driver changes 
their lane based on 
time dimensional 
factors 

The research process 
may include the 
collection of behaviour 
data in the form of 
simulator 
experiments, and 
possibly on-road 
experiments. 

This information may 
be collected using a 
camera setup inside 
the vehicle. The use of 
an eye-tracker to 
observe which 
information topics 
drives are looking at 
while reacting to over-
take requests. 

This information is 
important as it helps in 
understanding safety 
parameters in 
collaborative driving 
between a human and 
AVs. 

Eye-glance movement Usually, a device is 
mounted and tracks 
where in space the 
subject is looking and 
can record at what 
point in time the 
subject is looking, 
which can then be 
measured in 
conjunction with other 
data collections e.g., 
reacting to an obstacle 
etc. 

Eye-movements are 
tracked through the 
device in any given 
scenario. Eye tracking 
can be measured in all 
sorts of experiments. 

Data is collected by 
eye-tracking device. 
There are numerous 
versions of such 
devices. 

Tracking eye-
movements is very 
helpful in many ways, 
knowing for instance 
what type of object 
catches the attention 
of the driver. It’s also 
helpful in deducting 
precise data of the 
subjects’ reaction time 
to any given stimuli. 
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When collecting behaviour data of participants, it is important to pay attention to the following 

• How the driver controls the driving tasks or process (for studies that have explored this 
aspect see Kolekar, S., de Winter, J. & Abbink, 2020; Tenhundfeld, N, L., et al., 2019; 
Beggiato, Hartwich, & Krems, 2019),  

• The drivers’ reaction time when initiation braking time (for studies that have explored 
this aspect see Tenhundfeld, N, L., et al., 2019; Cleij, Venrooij, Pretto, Pool, Mulder, & 
Bülthoff, 2018, Markkula et al., 2016) and transition frequency (for studies that have 
explored this aspect see Hecht, Kratzert & Bengler, 2020; Beggiato, Hartwich, & 
Krems, 2019).  

• The time before activation (TB) and time before activation plus personal approach 
(TBP) (for studies that have explored this aspect see Danner, Pfromm, & Bengler, 
2020) 

• Information needs and visual attention during driving – eye tracking behaviour (see for 
studies that have explored this aspect Feierle, Danner, Steininger & Bengler, 2020; 
Hecht, Kratzert & Bengler, 2020), as this information helps in understanding where the 
driver looks when initiation a specific move or driving task. 

Furthermore, it is important to note that most studies may encompass one or more of the 
behaviour data mentioned above. The structure of the environment and the road in which the 
driver moves are important, as it tends to influence the drivers’ control signals, reaction time, 
steering, accelerating and braking, and eye movement when driving. Another influential factor 
to consider is that of the automated vehicle’s level of automation, as this has the potential to 
substantially influence driver behaviour, perceived trust and acceptance. 

1.5.2 Automated Vehicle-Vulnerable Road User Interaction Data 

The interaction between VRU with AV is different from manual driving vehicles, as some 
interaction in manual driving, like gestures and eye contact between human driver and VRU, 
are removed or to be replaced (Löcken, Golling, and Riener 2019; Lundgren et al. 2017). 
Therefore, to understand the interaction between VRU and AV and further to evaluate safety 
of AV by VRU behaviour modelling, data collection of VRU behaviour is necessary. 

The data planned to be collected include dynamics information of VRU, like crossing speed, 
crossing acceleration, crossing angle and trajectories, also VRU’s reaction or waiting time 
when VRUs interact with AV’s manoeuvres (for example, stop, start or other eHMIs). The 
posture information is also considered in the data collection as it is not obvious how gesture 
interaction will be changed in the AV driving scenarios. Eye movement may also be recorded 
in some studies by equipping VRUs with one eye tracking equipment.   

The data mentioned above will be collected by combination of different equipment. Virtual 
reality (VR) and augmented reality (AR) environment are commonly used in simulator studies 
for VRU behavioural data collection (see section 2.4.2 for more information related to AR). 
Besides, camera placed inside the AV (front camera) and outside the AV, some signal sensors 
inside the AV like LIDAR, and sensors on the VRU are also considered in the data collection 
plan. 
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1.5.3 Remarks for Ethical Implication in Collecting Drivers’ Data 

There are several key ethical principles that have to be followed when collecting empirical data 
within the SHAPE-IT project. For the purpose of this document, we refer to it as the “LANE 
model”. 
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Figure 7 The LANE model - the errors represent a movement from one aspect of importance 
to another (including reversibility if need so) in collecting behaviour data. 

 

When collecting empirical data in research studies, the ESRs need to make sure that the 
following are given careful consideration. 

Legibility to ethical obligations – this is the process of making sure that the empirical data 
collected falls within the framework of ethical guidelines, and that it does not infringe on the 
human user’s rights within the research process. Thus, the use of the data to be collected 
should be made clear to the participants, though without influencing the research results. This 
process is imperative from a scientific research ethical standpoint, and should aim to protect 
the intellectual property. 

Agency for data consent – this process involves the participant’s right to withdraw or withhold 
their consent to the use of their data during the data gathering process. This is an important 
factor and is aligned with the above notion or principle. As a result, this should be made clear 
before the research study commences.  

Negotiability between participants and researcher – this is concerned with the societal and 
scientist contract surrounding the use of empirical data. After the data have been collected, its 
use should be aligned with research storage and the duration of its use. As a result, within the 
SHAPE-IT project, the aim is to keep to the ethical frameworks of scientific data use and 
storage of the empirical data that will be collected.  

Evidence diffusion on publications – This is the process of making sure that the collected 
data are analysed in an ethical manner, and that all possible misrepresentation have been 
removed before publishing the results. As a result, proper techniques should be employed 
when analysing it. For example, the following questions should be addressed and clarified: 
What driver behaviour data is used from amongst the collected ones? What ways are 
inferences deduced from the drivers’ behaviour data set?  
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2 Additional Tools for Empirical Studies 

Collecting relevant, valid and reliable data is one of the most important factors in any study 
design. SHAPE-IT is an extensive project – studying road users both inside and outside the 
vehicle, along with attitudes and trust – which is why it’s very important to account for all the 
relevant data that underlies the interaction between AVs and humans. Depending on the 
research question and the assessment of data, SHAPE-IT ensures that researchers are 
equipped with tools that allows for various angles in approaching a certain phenomenon, 
whether it is of qualitative and or quantitative data. These include physiological (including 
neurophysiological) data, behavioural data, interviews, self-reporting scales and observations. 
This section will therefore provide deeper insights on various methods, complementary to 
those presented in Chapter 1. 

2.1 Interviews  

Interviews are designed to gather in-depth information, and allow researchers to explore, 
explain and synthesize people’s opinions, behaviour, experiences and attitudes towards a 
phenomenon. In SHAPE-IT, we are using a mix of different interviewing techniques, 
mentioned below. Depending on the precise research question, one technique will be more 
favourable than the other. The three most relevant types of interviews are semi-structured 
interviews, focus groups and structured interviews. To enable a full analysis of interview data, 
semi-structured and focus group interviews should be audio- or video-recorded and 
transcribed. However, recording an interview may impact the participants and the data 
collected. Whether you choose to record audio or video, or both, may also have ethical 
implications. The data recorded in interviews must be collected, stored and processed in 
accordance with GDPR and human research ethical guidelines. These guidelines allow for 
each researcher to derive valuable data from subjects that can be used to sharpen research 
questions and at the same time inspire for innovation. Table 2 brings an overview of main 
advantages and limitations of the semi-structured interviews, structured interviews, and focus 
groups. These are further discussed in the following sections.  
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Table 2 Advantages and disadvantages of semi-structured, structured and focus group 
interviews 

Type of interview Advantages Disadvantages 

Semi-structured Encourages reflection and exploration of more in-
depth information 
  

Questions need development, review and 
testing before implementation 

Flexibility: The interviewer can tailor follow-up 
questions to fit the topic and situation on the fly 

Prone to social desirability bias, especially if 
the topic is sensitive 

Encourages two-way communication Time-consuming 

Possibility to compare previous and future qualitative 
studies 

Relies on the interviewer: Training is required 
 

Opportunity to learn the reasoning behind the 
answers 

 

Suitable for interviewing about sensitive topics  

  

Structured Standardised questions Rigorous testing and piloting of questions 

Reliable Rigid 

Replicable Limited scope 

Cost effective: No training required No in-depth information 

Interviewer can clear up misunderstandings Interviewer cannot alter questions 

Reduced social desirability bias  

Focus groups Easily measure reaction to a topic or evaluate a 
design prototype 

Social desirability bias 

Timesaving by interviewing several persons at once Requires moderator training 

Understand met and unmet needs May miss out on important aspects due to 
group dynamic 

Receive feedback on a design strategy or product Moderator bias 

Uncover new concept ideas Sample may not be representative 

Explore decision making processes Relies on group dynamic 

Encourages dialogue and interaction Depends on moderator and group sample 

 

2.1.1 Semi-structured Interviews 

Semi-structured interviewing is a flexible and widely used method of data collection in 
qualitative research (Willig, 2008). Semi-structured interviews adhere to a pre-prepared 
interview guide, often phrased with open-ended questions with emphasis on narrative and 
experience to encourage reflection on the topic. What differs from structured interviews is the 
flexibility; semi-structured interviews allow the interviewer to ask follow-up questions or circle 
back to a topic brought up by the participant and elaborate their responses  

Semi-structured interviews are suitable for exploring and synthesizing novel topics as they 
promote two-way communication allowing comprehensive discussions in the topic of 
investigation. Liu et al. (2020) explored the diversity of user acceptance of connected AVs by 
interviewing 36 experts in the field of AV cyber security and privacy. Based on the analysis, 
the authors provided recommendations for design strategies, how to mitigate the risk of cyber 
security and privacy dangers regarding connected AVs, and guidelines for developing trust 
among end users. In a driving simulator study of older people interacting with an HMI, Li et al. 
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(2029) utilized semi-structured interviews as well. Topics discussed involved driving 
behaviour, expectations on highly automated vehicles, opinions and propositions for 
manufactures, NDRT and driving style of AV. Qualitative data on elderly people provided some 
insight for researchers on preferences. In-depth data can guide researchers in design 
processes to fulfil traits such as comfort and acceptance (Li et al., 2019). For example, it was 
noted that the elderly preferred to hands-on opportunities, a good first-time experience with 
the AV as it goes a long way in developing trust (Eisma et al., 2003). These interviews are 
concentrated and researcher can be agile with follow-up questions which means that 
interviews might, up to a point, differ from one participant to another. This constrains the 
degree to which answers are comparable and reliable (as opposed to structured interviews). 
Another reported downside is that spontaneous questions might be biased.  

2.1.2 Structured Interviews 

Structured interviews are standardized, and in essence, researcher-administered surveys. 
This approach ensures the participants are presented with exactly the same questions in the 
same order. The strength of this approach is responses with high reliability that can be 
statistically analysed and compared between groups. The main difference from a self-
administered questionnaire is that the researcher is present, asking the questions and 
collecting data. However, this opens up for social desirability bias, where participants tend to 
answer questions in a manner that can be viewed favourably by the researcher. On the other 
hand, while administering structured interviews, the researcher can clear up any confusing 
phrases or questions the participant may have regarding the data collection in person. As 
mentioned earlier, eHMI designs are not standardized yet, e.g., no consensus on where the 
interface should be placed (Bengler et al., 2020). Inviting participants to a study and gather 
large sample of data fairly quick (compared to semi-structured interviews) can shed light on 
preference and usability. Faas, Mathis & Baumann (2020) applied structured interview after a 
study exploring eHMI. The data suggested that pedestrians are more trusting and perceived 
the AV as intelligent if the eHMI at least provide information on its status. Researchers also 
discovered that information about what the AV is perceiving, did not yield any positive 
outcomes, rather, it was reported that the information disrupt traffic flow. Structured interviews 
are in this sense useful while allowing for reliable statistics. On the downside, it appears that 
there is no room for the participant to elaborate on any question which could mean that the 
response is not precise/intentional. This can occur if the questions are not thought through 
and in questionnaires with poor dimensional scales  

2.1.3 Focus Groups 

Focus groups, or group interviews, are suitable when the interaction between the participants 
is a vital source of data. As an alternative to semi-structured interviews, focus groups’ 
advantage is the ability to challenge, develop and extend the participants statements through 
dialogue and interaction. The approach can be used to spark new insight or ideas, or to 
evaluate a design or product by plenary discussion. Focus groups must be moderated by an 
interviewer, whose task is to introduce the topic at hand and steer the discussion, prompting 
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group members to respond and elaborate their statements. A focus group should not consist 
of more than six members (Willig, 2008).   

2.1.4 Methods of Analysis of Interview Data 

Method of analysis depends on the research question and is chosen accordingly. In transport 
research, thematic analysis has been applied as the method of analysis for several interview 
studies (see Alyavina et al., 2020; Gössling et al., 2016; Hafner et al., 2017; Liu et al., n.d.). 
Thematic analysis is a flexible approach for identifying, analysing and interpreting patterns or 
themes within qualitative interview data (Braun & Clarke, 2006). The methodology is 
systematic and rigorous enough for determining the credibility and validity of the process 
(Nowell et al., 2017). 

Other methods of analysis that may be suitable for interview data in SHAPE-IT are discourse 
analysis, grounded theory and interpretative phenomenology (Willig, 2008). In instances 
where the objective of the research is so congregate and summarize expert opinions, less 
vigorous methods may be applied. In the SHAPE-IT position paper, Tabone et al. (2020) 
utilized a semi-structured interview approach by interviewing 16 Human Factors’ researchers. 
Their responses were summarized by the main and second author and sent to the 
interviewees for approval. The aim of the paper was to gather expert opinions from 
independent Human Factors’ researchers regarding their perspectives on automated vehicles 
and interactions with vulnerable road users in future urban environments. Similar approaches 
have been used in other studies in the transport sector, such as Kyriakidis et al. (2019), along 
with other expert consensus papers from working groups and workshops (e.g. International 
Transport Forum, 2019). In these types of papers and reports, the findings are summarized 
and discussed without the use of systematic, qualitative methodology. 

Suggested Reading 

Paper comparing different types of pattern-based, qualitative methods of analysis: 

• Braun, V., & Clarke, V. (2020). Can I use TA? Should I use TA? Should I not use TA? 
Comparing reflexive thematic analysis and other pattern-based qualitative analytic 
approaches. Counselling and Psychotherapy Research, capr.12360. 
https://doi.org/10.1002/capr.12360 

• Saldaña, J. (2009). Coding Manual for Qualitative Researchers. SAGE Publications 
Inc. Saldana, J. (2015). The Coding Manual for Qualitative Researchers (3rd ed.). 
SAGE Publications Ltd. 

Practical guide to cognitive interviewing techniques: 

• Willis, G. B. (2004). Cognitive interviewing: A tool for improving questionnaire design. 
sage publications. Retrieved from 
https://www.dea.univr.it/documenti/OccorrenzaIns/matdid/matdid823948.pdf 
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2.2 Questionnaires   

Questionnaires and surveys are useful tools for collecting data such as personality 
characteristics, opinions, attitudes and experiences from a large sample of participants, as 
well as participant demographics (Langdridge & Hagger-Johnson, 2009). There are some 
general design principles to mind in order to collect a reliable and valid set of data. The 
following principles are adapted from Langdridge & Hagger-Johnson (2009): 

• Keep the survey as brief as possible. The response rate goes down with increased 
length. Adjust the language to your target sample. Avoid technical jargon and 
terminology. 

•  Ask one question at a time. 
•  Phrase your questions as unambiguous as possible. 
•  Start with the easiest questions and gradually build up to more difficult ones. 
•  Phrase the questions in a neutral manner. 
•  Pilot your questionnaire before administering it to your study sample.  

Measuring psychometrics such as attitudes or opinions are often done with Likert scales 
(Likert, 1932). Likert scales are constructed in a five- or seven-point scale where the 
participant expresses their degree of agreement with a statement (from disagree to agree). To 
assess reliability of the measurement scale, tests for Cronbach’s alpha coefficient or split-half 
reliability may be applied (Langdridge & Hagger-Johnson, 2009). 

As an alternative to Likert scales, semantic differential scales (Osgood et al., 1957) are also 
well-suited for measuring attitudes. This approach is more indirect than Likert scales. 
Semantic differential scales build on humans’ ability to think in metaphors and to draw parallels 
between different experiences. With these types of questions, the participants are asked to 
indicate thoughts or feelings based on a scale of antonyms, for example on a scale from good 
to bad, or from interesting to uninteresting. Semantic differential scales have shown to be 
reliable and correlate well with other scales measuring attitudes (Langdridge & Hagger-
Johnson, 2009). 

However, it is important to discuss the reliability and validity of scales and questionnaires here. 
When developing their own measures, scholars often apply measurement building procedures 
that are inconsistent with best practices. Test/scale development is an extensive scientific 
discipline, that involves numerous theoretical, methodological, and statistical competencies 
(Carpenter, 2018). Simply put, items have to be designed in a certain manner (e.g., 
linguistically, logically, following certain theoretical background) and a pilot study should be 
run. An item analysis should be performed (regrading, for example, internal consistency, inter-
item and item-total correlation, or attenuation effects). Once the quality of the items seems 
satisfactory, data from a larger sample should be collected in order to perform further statistical 
and psychometric analyses to evaluate, to name a few, the internal consistency, stability in 
time, construct validity, or convergent validity of the measure (for a brief overview of the scale 
development process, see Carpenter, 2018). This is the only way to assure that the 
questionnaire is reliable (i.e., the amount of random error in the measure is minimised) and 
valid (i.e., the questionnaire measures what it claims to measure). If done correctly, this 
process is extremely time-consuming, very expensive, and requires researcher’s expertise in 
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the discipline of test development. Therefore, we strongly recommend researchers to use 
already validated questionnaires instead of constructing new ones or using unvalidated 
questionnaires. For interested readers, we recommend reviewing keywords such as “classical 
test theory” and “item-response theory”. 

2.2.1 Questionnaires in Automated Vehicle Research 

In AV-human interaction research, questionnaires can be administered to measure 
behavioural data on various topics and aspects. For instance, Hagenzieker et al., (2020) 
measured behavioural intent and expectations of cyclists when interacting with AVs, while 
other studies have collected survey data on crossing intentions and decisions of pedestrians 
(De Clercq et al., 2019; Nuñez Velasco et al., 2019), and trust in AVs before and after take-
over situations (Gold et al., 2018). Questionnaires can also be used to evaluate HMI and eHMI 
design strategies (Bazilinskyy et al., 2019; Fridman et al., 2017), as well as for psychometric 
testing, like measuring how personality traits affects human-technology interaction (Attig et al., 
2017). Table 3 presents some of the questionnaires that will be used in the SHAPE-IT 
research projects, and may serve as an inspiration for others when planning their study.  
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Table 3 Questionnaires considered in SHAPE-IT research activities  
Domain  Method Reference 

Relationship to technology  

  Trust in automation LETRAS-G 

(German questionnaire) 

Kraus, J. M. (2020, August). Psychological processes in the formation and 

calibration of trust in automation. https://doi.org/10.18725/OPARU-32583 

 Inter-cultural Scale to Measure 

Trust in Automation  

Chien, S. Y., Semnani-Azad, Z., Lewis, M., & Sycara, K. (2014, June). 

Towards the development of an inter-cultural scale to measure trust in 

automation. In International conference on cross-cultural design (pp. 35-

46). Springer, Cham. 

 Propensity to trust in 

automation 

Merritt, S. M., Heimbaugh, H., LaChapell, J., & Lee, D. (2013). I trust it, 

but I don’t know why: Effects of implicit attitudes toward automation on 

trust in an automated system. Human factors, 55(3), 520-534. 

 Trust in technology McKnight, H., Carter, M., & Clay, P. (2009). Trust in technology: 

development of a set of constructs and measures. Digit 2009 proceedings, 

10. 

 Trust in specific technology Mcknight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in 

a specific technology: An investigation of its components and measures. 

ACM Transactions on management information systems (TMIS), 2(2), 1-

25. https://doi-org.tudelft.idm.oclc.org/10.1145/1985347.1985353 

 Technophobia scale Sinkovics, R. (2014). Technophobia scale. Compilation of social science 

items and scales (ZIS) . https://doi.org/10.6102/zis62 

Immersiveness of virtual environment 

  Presence Questionnaire Singer, M. J., & Witmer, B. G. (1999). On selecting the right yardstick. 

Presence: Teleoperators and Virtual Environments, 8(5), 566–573. 

https://doi.org/ 10.1162/105474699566486. 

Personality    

Locus of Control   Internal-External Control, IE-4 

(German version) 

Kovaleva, A., Beierlein, C., Kemper, C. J. & Rammstedt, B. (2014). 

Internale-Externale-Kontrollüberzeugung-4 (IE-4). Zusammenstellung 

sozialwissenschaftlicher Items und Skalen (ZIS). 

https://doi.org/10.6102/zis184 

  Scale of Internal and External 

Control (German Version) 

Rost-Schaude, E., Kumpf, M., & Frey, D. (2014). Interne-Externe 

Kontrolle. Zusammenstellung sozialwissenschaftlicher Items und Skalen 

(ZIS). https://doi.otg/10.6102/zis128 

Self esteem  Rosenberg Self-Esteem Scale 

(German version) 

Ferring, D. & Filipp, S.-H. (1996). Messung des Selbstwertgefühls: 

Befunde zu Reliabilität, Validität und Stabilität der Rosenberg-Skala. 

Diagnostica, 42(3), 284-292. 

Self-Efficacy  Self-Efficacy Scale - Short Form 

(German version) 

Beierlein, C., Kovaleva, A., Kemper, C. J. & Rammstedt, B. (2014). 

Allgemeine Selbstwirksamkeit Kurzskala (ASKU). Zusammenstellung 

sozialwissenschaftlicher Items und Skalen (ZIS). 

https://doi.org/10.6102/zis35 

Impulsivity  Impulsive Behaviour Scale-8 

(German version) 

Kovaleva, A., Beierlein, C., Kemper, C. J. & Rammstedt, B. (2014). Die 

Skala Impulsives-Verhalten-8 (I-8). Zusammenstellung 

sozialwissenschaftlicher Items und Skalen (ZIS). 

https://doi.org/10.6102/zis183 

https://doi.org/10.18725/OPARU-32583
https://doi-org.tudelft.idm.oclc.org/10.1145/1985347.1985353
https://doi.org/10.6102/zis62
https://doi.org/10.6102/zis184
https://doi.org/10.6102/zis184
https://doi.org/10.6102/zis184
https://doi.org/10.6102/zis184
https://doi.org/10.6102/zis184
https://doi.otg/10.6102/zis128
https://doi.org/10.6102/zis35
https://doi.org/10.6102/zis183
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Sensation seeking  Arnett Inventory of Sensation 

Seeking (AISS) (German 

version) 

Roth, M. & Mayerhofer, D. (2014). Deutsche Version des Arnett Inventory 

of Sensation Seeking (AISS-d). Zusammenstellung 

sozialwissenschaftlicher Items und Skalen (ZIS) 

https://doi.org/10.6102/zis73 

  Arnett Inventory of Sensation 

Seeking (AISS) (English 

version) 

Arnett, J. (1994). Sensation seeking: A new conceptualization and a new 

scale. Personality and Individual Differences, 16(2), 289-296. doi: 

10.1016/0191-8869(94)90165-1 

Sensation seeking  Brief Sensation Seeking Scale 

(BSSS) 

Hoyle, R. H., Stephenson, M. T., Palmgreen, P., Lorch, E. P., & Donohew, 

R. L. (2002). Reliability and validity of a brief measure of sensation 

seeking. Personality and individual differences, 32(3), 401-414. 

Big five   Big Five Inventory-10 (German 

Version) 

Rammstedt, B., Kemper, C. J., Klein, M. C., Beierlein, C., & Kovaleva, A. 

(2014). Big Five Inventory (BFI-10). Zusammenstellung 

sozialwissenschaftlicher Items und Skalen (ZIS). 

https://doi.org/10.6102/zis76 

Susceptibility to 

motion sickness 

 Motion Sickness susceptibility 

Questionnaire (MSSQ) 

Van Emmerik, M. L., De Vries, S. C., & Bos, J. E. (2011). Internal and 

external fields of view affect cybersickness. Displays, 32(4), 169–174. 

https://doi.org/ 10.1016/j.displa.2010.11.003 

Mood    

  Positive and negative Affect 

Schedule (PANAS) (German 

version) 

Janke, S. & Glöckner-Rist, A. (2014). Deutsche Version der Positive and 

Negative Affect Schedule (PANAS). Zusammenstellung 

sozialwissenschaftlicher Items und Skalen (ZIS). 

https://doi.org/10.6102/zis146 

Motion/Simulator sickness   

  Misery Scale (MISC),  Van Emmerik, M. L., De Vries, S. C., & Bos, J. E. (2011). Internal and 

external fields of view affect cybersickness. Displays, 32(4), 169–174. 

https://doi.org/ 10.1016/j.displa.2010.11.003 

 Simulator Sickness 

Questionnaire (SSQ) 

Van Emmerik, M. L., De Vries, S. C., & Bos, J. E. (2011). Internal and 

external fields of view affect cybersickness. Displays, 32(4), 169–174. 

https://doi.org/ 10.1016/j.displa.2010.11.003 

Workload    

  NASA-TLX Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task 

Load Index): Results of empirical and theoretical research. In Advances 

in psychology (Vol. 52, pp. 139-183). North-Holland. 

 The driving activity load index 

(DALI) 

Pauzié, A. (2008). A method to assess the driver mental workload: The 

driving activity load index (DALI). IET Intelligent Transport Systems, 2(4), 

315. https://doi.org/10.1049/iet-its:20080023 

Situation Awareness  

  Situation Awareness Rating 

Technique (SART) 

Taylor, R. M. (1990). Situational Awareness Rating Technique (SART): 

The Development of a Tool for Aircrew Systems Design. Situational 

Awareness in Aerospace Operations (AGARD-CP-478). pp. 3/1 – 3/17, 

Neuilly Sur Seine, France: NATOAGARD. 

 

 

https://doi.org/10.6102/zis73
https://doi.org/10.6102/zis76
https://doi.org/10.6102/zis146
https://doi.org/10.1049/iet-its:20080023
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2.3 Physiological Measures  

Traditionally, performance-based data (e.g., take-over time, minimum time to collision) and 
self-assessment methods (e.g., questionnaires, interviews) are used to assess driver's 
cognitive states. With the development of low-cost, non-invasive, wearable sensors a new 
possibility to assess driver’s cognitive states via psychophysiological signals emerges. Such 
data provide a broad picture of the internal states (e.g., cognitive workload, emotions, 
attention, and situational awareness) that drivers experience, and allow to reflect on how 
driver’s cognitive states are affected by non-driving related tasks (activities that are not related 
to driving, e.g. operating comfort or infotainment systems, communicating with passengers or 
remote people, eating and drinking; Pfleging & Schmidt, 2015), vehicle configurations, or 
driving environments (Du, Yang, & Zhou, 2020).  

Measuring the changes in central and peripheral nervous system functioning is a possible way 
to improve the assessment of cognitive states (e.g., attention, perception, decision making). 
Such assessment can be done continuously, in an unobtrusive way, without disturbing the 
real-time task. Psychophysiological measures complement and extend performance-based 
metrics (e.g., reaction times). Moreover, as humans may not always be accurate in making 
judgements about their cognitive states, psychophysiological measures improve assessments 
of motorists’ state-level changes in cognition. Applying a multi-method approach – combining 
the subjective, performance-based, and physiological measures – provides an additional 
value in automated driving research, and for future applications in driver monitoring systems, 
adaptive alert systems, and neuroadaptive HMIs (Lohani, Payne, & Strayer, 2019).  

Commonly used techniques in vehicle-related research, which are also considered to be 
implemented within SHAPE-IT, include electroencephalography (EEG) and event-related 
potentials (ERPs), pupillometry, electrocardiography (ECG), electrodermal activity (EDA), and 
Electromyography (EMG). In the following sections, these techniques are briefly introduced 
and discussed in the context of driving research. Main advantages and disadvantages of each 
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technique are introduced. However, these are very context-dependent, and should be critically 
evaluated for every research design. The goal of this chapter is to introduce and briefly discuss 
the opportunities brought to driving research by implementing psychophysiological measures. 
Many techniques (such as respiration and blood pressure measures, functional near infrared 
spectroscopy, or thermal imaging) were omitted, as the aim of this chapter is to focus on the 
techniques considered within SHAPE-IT rather than bringing a comprehensive overview of all 
psychophysiological techniques. At the end of the sections, advantages and limitations of the 
presented techniques are overviewed. 

 

 

Figure 8 A 32-channel active electrode EEG system that will be used in driving simulator 
studies at Ulm University 

2.3.1 Electroencephalography and Event-related Potentials 

Electroencephalography (EEG) is a non-invasive neuroimaging technique which allows to 
record electrical activity of the brain. It has high temporal resolution (in milliseconds), is 
portable, and relatively low-cost. It allows to study brain functions such as memory, vision, 
motor imagery, emotion, or perception (Malik & Amin, 2017). EEG electrodes are placed on a 
pre-defined position of the scalp (usually using the 10–20 system) and continuously record 
the neural activity. This activity is produced mostly by post-synaptic potentials of cortical 
pyramidal cells, which play a critical role in advanced cognitive functions (Lohani, Payne, & 
Strayer, 2019). The activity of a single neuron is not measurable on the scalp, therefore most 
of the activity measured by EEG consists of summation of the activity of big populations of 
neurons with similar spatial orientation (Kamel & Malik, 2015).  

Neurons can generate action potentials in a rhythmic pattern (oscillatory activity). Spectral 
information about the oscillatory activity may be decomposed from the EEG signal using the 
Fourier transform (Lohani et al., 2019). There are five major types of oscillatory activity based 
on their frequencies: gamma (above 30 Hz), beta (13-30 Hz), alpha (8-13 Hz), theta (4-8 Hz), 
and delta (0.1-4 Hz).   

In driving research, the most commonly studied frequency bands are alpha and theta waves. 
Alpha and theta waves are related to each other in a reciprocal (opposite) way – with increase 
in theta power, we can observe decrease in alpha power, and vice versa (Klimesch, 1999). 
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Previous research suggests that increased theta and reduced alpha powers are closely 
associated with increasing mental workload (e.g., Brouwer et al, 2012, Diaz-Piedra, 
Sebastián, & Di Stasi, 2020, Missonnier et al, 2006), while fatigue increases alpha power 
(Käthner et al., 20014). Increased alpha power was also observed during the relaxed condition 
compared with the engaged condition in an autonomous driving setting (Zander et al., 2017).  

The measurement of the brain’s response to a specific stimulus is called event-related 
potential (ERP), and is the most widely used method in cognitive neuroscience research to 
study physiological correlation associated with information processing (Kamel & Malik, 2015). 
ERPs allow distinguishing perceptual, cognitive and motor processes implicated in complex 
situations (Paxion, Galy, & Berthelon, 2014). In human factors and ergonomics, ERPs are 
used to study aspects such as vigilance, mental workload, fatigue, adaptive aiding, stressor 
effect on cognition, and automation (Brookhuis & de Waard, 2010). One of the most widely 
studied ERP component is the P3 (or P300). The P3 (comprising the P3a and P3b 
components) is a positive deflection in voltage, which appears roughly 250 to 500 ms post-
stimulus, and is a well-established parameter for analysing cognitive functions such as 
attention and memory (Protzak & Gramann, 2018). Reduced ERP amplitudes were previously 
linked to under-arousal states (such as fatigue, time on task, lower vigilance) as well as to 
over-arousal state (such as high workload) (Lohani et al., 2019). 

2.3.2 Pupillometry 

The pupil permits light to enter the eye and reach retina. Its diameter is controlled by two sets 
of smooth muscles in the iris, constrictor muscles decreasing its diameter and dilator muscles 
increasing it. The diameter changes are meant to optimise vision via modulating the amount 
of light that reaches retina. Since 1960s, researchers also study the changes in pupil diameter 
as an index of cognitive functioning (Sirois & Brisson, 2014). Previous research found that 
pupil diameter increases with task difficulty, mental workload, emotionality of stimuli, and 
information-processing demands (Beggiato, Hartwich, & Krems, 2018, Strauch et al., 2019).  

Pupil diameter is a continuous variable. Researchers often evaluate fluctuations of pupil 
diameter as a function of time-locked events (such as onset of specific events at precise time 
points in video or real-world sequences). An eye-tracking device is used to collect the data. It 
is a non-invasive, low-cost method which can be used in various contexts (Sirois & Brisson, 
2014). 
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Figure 9 Eye-tracking device, available at the Ulm University  

 

To ensure that the changes in pupil diameter is caused by changes in emotional or cognitive 
states, and not purely by the light intensity, it is important that researchers control for the 
amount of light that the participant is exposed to. Palinko and Kun (2012) suggest that, in 
certain situations, it is possible to separate the effects of illumination and visual cognitive load 
on pupil diameter. Nonetheless, interpreting changes in pupil size outside of controlled 
laboratory settings becomes a major challenge due to its heavy dependence on ambient light 
(Beggiato et al., 2018).  

In the context of driving, pupillometry has been often studied as a measure of cognitive 
workload (Dlugosch, Conti, & Bengler, 2013; Palinko & Kun, 2012; Schwalm, Keinath, & 
Zimmer, 2008, Strauch et al., 2019). Moreover, Beggiato et al. (2018) used pupillometry to 
study discomfort in automated driving. They observed that pupil diameter increased 
significantly during the discomfort interval and decreased steadily after reported discomfort. 

2.3.3 Electrocardiography 

Electrocardiography (ECG, sometimes also EKG) is a method to record the electrical activity 
of the heart muscles. ECG is a non-invasive technique using surface electrodes placed on the 
skin. The number of electrodes and their location vary. Three electrodes are commonly used 
in research settings, placed under the left and right clavicular line and above the hip of the 
participant. ECG produces an electrocardiogram (see Figure 10), which is a recording of 
voltage changes over time. It comprises the P wave, QRS complex, and T wave. The R 
component has large magnitude, hence is easily detectable (Lohani et al., 2019).  

 

 
Figure 10 Example of one heart beat recorded on ECG 

 

Heart rate (HR) and heart rate variability (HRV) are commonly used techniques of ECG 
analysis in the context of driving research. HR is the number of heartbeats in one minute. HR 
is generally derived by converting mean heart period (the time between two successive R 
spikes) to heart rate in beats per minute (Lohani et al., 2019). HRV is the fluctuation in the 
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intervals between adjacent heartbeats, which are generated by heart-brain interactions and 
autonomic nervous system processes. There is a number of ways to quantify HRV (for an 
overview, see Shaffer & Ginsberg, 2017).  

Previous research has shown that HR can be used as a physiological index of arousal induced 
by driving demands. In over-arousal cognitive states (such as high mental workload), the HR 
increases. On the contrary, a significant drop in HR is observed in under-arousal states (such 
as drowsiness). HRV also varies with workload experienced by drivers. HRV decreases with 
increasing task demands, while drowsiness led to higher HRV (for an overview, see Lohani et 
al., 2019).  

2.3.4 Electrodermal Activity  

Electrodermal activity (EDA, also known as a galvanic skin response, or skin conductance) 
refers to the variation of the electrical properties of the skin in response to sweat secretion. 
The activity of sweat glands is controlled exclusively by the sympathetic autonomous nervous 
system (ANS), and plays an important role not only in thermoregulation, but it is also a 
concomitant of emotional arousal. EDA is frequently used method in psychophysiological 
research. It is fairly easy to obtain a distinct electrodermal response, recording is possible with 
inexpensive equipment, is non-invasive, and can be done both in laboratory and field 
conditions (Benedek & Kaernbach, 2010). 

EDA can be measured via exosomatic or endosomatic techniques. Exosomatic techniques 
apply a small current through a pair of electrodes and measure electrical resistance from the 
skin (either direct current or altering current). Endosomatic techniques use only potential 
differences originating in skin itself (Boucsein, 2011).  

The time series of EDA comprise tonic activity (slowly varying, skin conductance level; SCL) 
and phasic activity (fast varying, skin conductance response; SCR). Phasic activity may reflect 
stimulus-specific responses. The event-related activity is commonly assessed by gauging the 
amplitude of the elicited SCR, which appears in a predefined response window, typically 1–3 
s or 1–5 s after the stimulus (Benedek & Kaernbach, 2010). 

Higher EDA is indicative of physiological arousal, caused by increased sympathetic ANS 
activity. It has shown to be related to many cognitive states, such as workload, stress, anxiety, 
or sleepiness. However, EDA is also sensitive to physiological reactivity and not all individuals 
have the expected SCR. EDA is also influenced by many other factors, such as respiration or 
mental effort. Therefore, interpreting EDA results in an applied and less-controlled setting 
should be done with caution, as it is sensitive to many psychological variables. It has also 
lower temporal resolution, as the response appears only 1-3 s after the stimulus onset (Lohani 
et al., 2019). 

Cognitive workload in the driving context has been often investigated using EDA. SCL and 
SCR amplitude is higher during increased workload and stressful events. Higher SCL could 
be also an indicative of lower levels of trust in automation (for an overview, see Lohani et al., 
2019; Mühl et al., 2019).  



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 

 

PUBLIC 
  50/106 

2.3.5 Electromyography 

Electromyography (EMG) is a discipline that deals with the detection, analysis, and use of the 
electrical signal that originates in neuromuscular activation associated with a contracting 
muscle. Muscle fibres are innervated in groups called motor units, which generate a motor unit 
action potential when activated. With increasing force in the muscle, more and more motor 
units are activated. Concurrently activated motor units superimpose to create the EMG signal. 
The EMG signal can be recorded using either surface electrodes placed on the skin, or 
inserted electrodes (wire or needle). In psychophysiological research, the unobtrusive, non-
invasive surface electrodes are generally preferred (De Luca, 2006).  

The surface EMG electrodes capture an activity of specific muscles of interest. Numerous 
features can be extracted from EMG signal (see De Luca, 2006). Commonly, the root mean 
square of the signal is reported, as well as peak spectral density, peak amplitude, and peak 
frequency. EMG can provide insights into emotional processes, as well as into mental 
processes such as stress. However, it might be challenging to tease apart muscular activity 
due to other confounding reasons (such as posture changes, scratching skin) from activity 
relevant changes in cognitive states (Lohani et al., 2019).  

In the context of driving, EMG was studied in relation to stress and fatigue. Increase in 
muscular tension of the trapezius muscle was associated with greater stress exposure (Lee 
et al., 2017). EMG system was also used for online detection of the level of drowsiness 
(Artanto, Sulistyanto, Pranowo, & Pramesta, 2017). 

2.3.6 Advantages and Limitations 

Table 4 brings an overview of the major advantages and disadvantages of the 
abovementioned psychophysiological measurement techniques. For better understanding of 
the advantages and limitations, we recommend to consult the suggested readings, especially 
a recent paper by Lohani et al. (2019).  

Table 4 Advantages and limitations of chosen psychophysiological measures 

Measure Advantages Limitations 

EEG/ERP 
  
  
  

High temporal resolution Low spatial resolution 

Relatively inexpensive (cf. fMRI) Might be uncomfortable 

Relatively unobtrusive (cf. fMRI)  Time consuming 

Portable Potentially high signal-to-noise ratio (signal has to be cleaned 
from noise, such as eye-movements or line noise) 

Pupillometry 
  

Inexpensive Dependent and influenced by ambient light 

Relatively unobtrusive 
 

ECG 
  
  
  
  

Inexpensive Body movements influences the data 

Reliable HR and HRV are influenced by contextual factors (respiration, 
posture, engagement, motivation) 

Easy to record   

Good signal-to-noise ratio   

Applicable in field studies   
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EDA 
  

Inexpensive Low temporal resolution 

Easy to record Sensitive to physiological reactivity, respiration, mental effort, 
etc. 

Suggested Reading 

Psychophysiology in driving context:  

• Lohani, M., Payne, B. R., & Strayer, D. L. (2019). A review of psychophysiological 
measures to assess cognitive states in real-world driving. Frontiers in Human 
Neuroscience, 13(March), 1–27. https://doi.org/10.3389/fnhum.2019.00057 

EEG/ERPs:  

• Malik, A. S., & Amin, H. U. (2017). Designing EEG Experiments for Studying the Brain: 
Design Code and Example Datasets (1st ed.). Academic Press. 

• Luck, S. J., & Kappenman, E. S. (2011). The Oxford Handbook of Event-Related 
Potential Components (Oxford Library of Psychology) (Illustrated ed.). Oxford 
University Press. 

Pupillometry:  

• Sirois, S., & Brisson, J. (2014). Pupillometry. Wiley Interdisciplinary Reviews: Cognitive 
Science, 5(6), 679–692. https://doi.org/10.1002/wcs.1323 

 

 

ECG:  

• Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics 
and Norms. Frontiers in Public Health, 5(September), 1–17. 
https://doi.org/10.3389/fpubh.2017.00258 

EDA:  

• Boucsein, W. (2011). Electrodermal Activity (2nd ed. 2012 ed.). Springer. 

EMG:  

• De Luca, C. (2006). Electromyography. Encyclopedia of medical devices and 
instrumentation. 

2.4 Further Tools  

In the following section, a list of different empirical strategies is presented, along with their 
potential and where they fall short. Depending on the empirical approach and the research 
question in mind, additional techniques can be applied to further enhance the validity of the 
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study, but more than that, such techniques extend the constraints of the research paradigm. 
This becomes highly valuable as some studies are solely dependent on such technologies. 

2.4.1 Wizard of Oz Paradigm  

Since most of technologies that AVs use in communicating with other road users are not 
commercially available, it is hard for participants or even researchers to have access to such 
technology. To solve this problem, Wizard of Oz (WoOZ) experiments are developed (Kelley, 
1984). With the ability to simulate an under-developed system, WoOZ has been widely 
adopted to address various subjects (Benzmüller et al., 2003; Kelley, 1984; Andemach, 
Deville, & Mortier, 1993). In the field of AVs technologies, in order to collect user data from a 
hypothetical model or developing AV system, WoOZ experiments are frequently used (Fuest, 
Michalowski, Träris, Bellem, & Bengler, 2018; Jarosch, Paradies, Feiner, & Bengler, 2019; 
Müller, Weinbeer, & Bengler, 2019). 

2.4.1.1 Vehicle Setups 

Typical WoOZ experiments consist of a participant, a driving wizard and an interaction wizard, 
where the driving wizard is hidden from the participant and the interaction wizard acts as an 
investigator (Bengler, Omozik, & Müller, 2020). As interactions between humans and different 
levels of automation are designed and investigated, the WoOZ setups would be adjusted 
accordingly. Taking interactions inside vehicles for instance, studies considering SAE Level 
2-4 automations would require the participant sitting in the front row of the vehicle, since 
manual control and take-over-requests are usually required (Wang, Sibi, Mok, & Ju, 2017). 
While for SAE Level 5 automations where driver is out-of-the-loop, the setup with passengers 
in the backseat is possible (Sherry, Beckwith, Esme, & Tanriover, 2018; Karjanto et al., 2018). 
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Figure 11 Wizard of Oz vehicle setup, available at Technical University Munich (Fuest et al., 
2018) 

2.4.1.2 Interaction Scenarios 

As most of the automated vehicles available to the market fall within SAE Level 2-3, studies 
are focusing on in-vehicle interactions, where the role of the participant is a human driver 
inside an automated vehicle. During these experiments, the driving wizard would be controlling 
the vehicle during the autonomous mode, and requests for intervention when the system limit 
is reached. On the other hand, interactions outside the vehicle could still be investigated using 
WoOZ paradigm. To investigate the interaction between pedestrian and automated vehicle in 
real world, WoOZ paradigm is widely adapted as the risk for participants is minimized 
(Palmeiro et al., 2018; Habibovic, Andersson, Nilsson, Lundgren, & Nilsson, 2016). Road 
crossing is one of the major scenarios, where reactions of participants seeing an “automated 
vehicle” when crossing are evaluated. During the experiments, the driving wizard acts like a 
passenger in the passenger seat, while the driver seat is either empty or occupied with a driver 
doing non-driving-related-tasks (e.g., reading newspaper, using smartphone, watching video 
etc.). Decisions of participants on whether to cross the road would then be analysed, and the 
overall performance of the automation during the experiment would be evaluated (e.g., trust, 
acceptance, HMI design etc.). 

2.4.1.3 Limitations 

Among all AV experiment methods, WoOZ is by far the optimized and most realistic solution 
for real interactions data collection between human and AV. However, beside the complexity 
in experimental setups, critics and questions about the validity of such methods as well as 
whether solutions developed using WoOZ paradigms could be realized still exist.  
Furthermore, the problem of delayed response exists as the reaction time of wizard operator 
is not comparable to the real automated system (Wang et al., 2017), making the lagging 
response noticeable to participants in studies. The driving condition of wizard operators also 
impacts their performance, resulting in potential inconsistent driving experiences across the 
experiment (Pai et al., 2020). Nevertheless, these drawbacks could be mitigated with 
experimental designs and further researches regarding this topic 

Suggested reading  

First WoOZ experiment in natural language processing:  

• Kelley, J. F. (1984, January). An iterative design methodology for user-friendly natural 
language office information applications. ACM Trans. Inf. Syst.,2(1),26–41. Retrieved 
from https://doi.org/10.1145/357417.357420 

Analysis of components of WoOZ paradigm for automated vehicle and its relations to 
psychological testing:  
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• Müller, A. I., Weinbeer, V., & Bengler, K. (2019). Using the wizard of oz paradigm to 
prototype automated vehicles: Methodological challenges. New York, NY, USA: 
Association for Computing Machine  

Evaluation and systematization of published experimental approaches, proposition of a 
specification language for the driving wizard’s behaviour:  

• Bengler, K., Omozik, K., & Müller, A. I. (2020). The Renaissance of Wizard of Oz 
(WoOz): Using the WoOz methodology to prototype automated vehicles. Proceedings 
of the Human Factors and Ergonomics Society Europe, 63-72 

2.4.2 Augmented and Virtual Reality  

Virtual reality simulation has been used in the automotive domain for experiments relating to 
both the driver and pedestrian side. Examples of driving simulators are discussed elsewhere 
in the document.  

Pedestrian simulators have been developed to test out eHMIs. It is still however unclear 
whether these methods are as valid as naturalistic testing.  Examples of pedestrian simulators 
include using screen-based setups (Ackermann, Beggiato, Schubert, & Krems, 2019; Chang, 
Toda, Igarashi, Miyata, & Kobayashi, 2018; Schwebel, Gaines, & Severson, 2008), mixed-
reality setups (Maruhn, Dietrich, Prasch, & Schneider, 2020), Cave Automatic Virtual 
Environment (CAVE) simulation (e.g., Agarwal, 2019; Kaleefathullah et al., in press; Mallaro, 
Rahimian, O'Neal, Plumert, & Kearney, 2017) and head-mounted displays (Bazilinskyy, 
Kooijman, Dodou, & De Winter, 2020; Böckle, Brenden, Klingegård, Habibovic, & Bout, 2017; 
Deb, Carruth, Fuad, Stanley, & Frey, 2020; Deb, Carruth, Sween, Strawderman, & Garrison, 
2017; De Clercq, Dietrich, Núñez Velasco, De Winter, & Happee, 2019; Hudson, Deb, Carruth, 
McGinley, & Frey, 2018; Otherson, Conti-Kufner, Dietrich, Maruhn, & Bengler, 2018; 
Schneider, & Bengler, 2020). See Feldstein, Lehsing, Dietrich, & Bengler, 2018 and 
Schneider, & Bengler, 2020, for more examples. 
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Figure 12 Coupled VR simulator, available at the Delft University of Technology (Bazilinskyy 
et al., 2020) 

 

Augmented reality (AR) has the potential of providing a more realistic simulation environment 
by superimposing visual elements that pose the highest risk to participants (e.g., vehicles) 
over a real background (Tabone, De Winter, Ackermann, Bargman, Baumann, Deb, 
Emmenegger, Habibovic, Hagenzieker, Hancock, Happee, Krems, Lee, Martens, 
Merat, Norman, Sheridan, & Stanton, 2020). Recent work (Maruhn, Dietrich, Prasch, & 
Schneider, 2020) has in fact proposed a method which does exactly that. In this case, the 
participants experience virtual vehicles that are augmented on the actual streetscape.  

2.4.2.1 Use Cases of AR 

The use of AR technology in traffic research is diversified. There have been applications of 
AR inside the vehicle to allow for enhanced navigation (Rusch, Schall Jr, Lee, Dawson, & 
Rizzo, 2014) for example. See Riegler, Riener, & Holzmann, 2020 for a number of use cases 
of AR inside the vehicle.  Other applications have included the use of AR for pedestrian 
navigation (Hesenius, Börsting, Meyer, & Gruhn, 2018; Montuwy, Cahour, & Dommes, 2018), 
city guides (Lakehal, Lepreux, Efstratiou, Christophe, & Nicolaou, 2020) and for crossing 
advise in urban traffic areas (Perez, Hasan, Shen, & Yang, 2018). 

AR in the automotive user-interface domain is still a very active topic of research with a number 
of open challenges (Riegler, Riener, & Holzmann, 2020) that could likely be solved using such 
technology.   

2.4.2.2 Opportunity for AR in SHAPE-IT 

AR provides a potential solution to various problems that current eHMIs face. These include 
situations where multiple VRUs are encountered or multiple vehicles are communicating to 
one or more VRUs. Such a situation gives rise to ambiguity which may lead to a VRU inferring 
that a particular AV is signalling them to cross when in fact it is signalling to another road user 
it has detected across the road. Therefore, the first VRU might make an erroneous crossing 
decision, leading to an accident if the AV drives on. Another issue is that there is no standard 
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design for these eHMIs and so VRUs need to learn and infer each design encountered. 
Furthermore, in cases where text is used as a communication modality, the issue of readability 
and language barriers arises.   

With AR, there is the potential to remove the eHMI from the exterior of the vehicle and place 
it on the VRU. This can be achieved through the use of Augmented Reality (AR) glasses which 
are able to place a virtual layer of information over the real environment. These devices are 
touted to be the replacement of the smartphone as a daily ubiquitous assistive technology and 
so their potential use in the future of urban road infrastructure should be explored. In this 
scenario, the wearer of the AR glasses would receive the message from an oncoming vehicle 
as a heads-up message on the device.  Standardizations of the eHMI would be easier for 
manufacturers since software can be designed much quicker than any other hardware 
attachment to the vehicle. Moreover, the eHMI design can be updated much more easily as 
standards change. Should personalization and customization be the preferred route, each 
user of the AR glasses would be able to customize the eHMI message depending to their 
preference. Therefore, if for example, a French speaker prefers text messages, they would be 
able to receive a communication from an AV in French while crossing in Tokyo. This solution 
breaks down the language barrier and allows for better understandability according to 
preferred modality (some users may prefer visuals over text, etc.). Moreover, since each VRU 
would be receiving the communication from the AV individually, the multi-actor problem could 
potentially be solved. In this case, only the VRUs involved in the interaction with the AV would 
be signalled and so ambiguity would be lessened. 

2.4.2.3 Limitations 

Results has so far demonstrated the applicability of the presented setup, however, the authors 
cautioned that reported deviation from behaviour in the “real” condition should be interpreted 
with caution. There are also multiple technical challenges which still need to be overcome. 
These include issues of occlusion, reflections and shadows. Moreover, technological 
improvement in VR glass display technology in terms of resolution and cameras is needed. 
Although there is still more work to be done in this area in order, the authors concluded that 
results still demonstrated that AR is a promising tool to investigate research questions 
concerning pedestrian behaviour in a safe, controlled and realistic environment. 

Suggested reading   

• Bazilinskyy, P., Kooijman, L., Dodou, D., & De Winter, J. C. F. (2020). Coupled 
simulator for research on the interaction between pedestrians and (automated) 
vehicles. Driving Simulation Conference Europe. Antibes, France. 

• De Clercq, K., Dietrich, A., Núñez Velasco, J. P., de Winter, J., & Happee, R. (2019). 
External human-machine interfaces on automated vehicles: Effects on pedestrian 
crossing decisions. Human factors, 61(8), 1353-1370. 

• Deb, S., Carruth, D. W., Sween, R., Strawderman, L., & Garrison, T. M. (2017). 
Efficacy of virtual reality in pedestrian safety research. Applied ergonomics, 65, 449-
460. 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 

 

PUBLIC 
  57/106 

• Feldstein, I. T., Lehsing, C., Dietrich, A., & Bengler, K. (2018). Pedestrian simulators 
for traffic research: state of the art and future of a motion lab. International Journal of 
Human Factors Modelling and Simulation, 6, 250–265. 
doi:10.1504/ijhfms.2018.096128 

• Hesenius, M., Börsting, I., Meyer, O., & Gruhn, V. (2018, September). Don't panic! 
guiding pedestrians in autonomous traffic with augmented reality. In Proceedings of 
the 20th International Conference on Human-Computer Interaction with Mobile 
Devices and Services Adjunct (pp. 261-268). 

• Perez, D., Hasan, M., Shen, Y., & Yang, H. (2019). Ar-ped: A framework of augmented 
reality enabled pedestrian-in-the-loop simulation. Simulation Modelling Practice and 
Theory, 94, 237-249. 

• Tabone, W., De Winter, J. C. F., Ackermann, C., Bärgman, J., Baumann, M., Deb, S., 
Emmenegger, C., Habibovic, A., Hagenzieker, M., Hancock. P. A., Happee, R., Krems, 
J., Lee, J. D., Martens, M., Merat, N., Norman, D. A., Sheridan, T. B.,& Stanton, N. A. 
(2020). Vulnerable road users and the coming wave of automated vehicles: Expert 
perspectives. Transportation Research Interdisciplinary Perspectives, 9, 100293. 
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3 Models of Human/Agent Interaction 

A model can be defined as a ‘representation of construction and the working of some system 
of interest’ (Maria, 1997). While the word ‘modelling’ refers to the process of developing a 
model, a model is in many ways similar to but a simpler form of a system that it represents. 
Many real-world problems can be defined as a dynamic interaction between competitive 
agents where agents’ physical (i.e., position, orientation, and velocity) and internal states (i.e., 
navigational goals, behavioural traits, and ‘mental model’ of the surrounding environment) can 
be accommodated into a mathematical framework (Brown, D. et al., 2020). Road users and 
especially AVs’ tasks such as state, intention, risk and trait estimation and also motion 
prediction and behaviour imitation could be addressed within this framework (Brown, D. et al., 
2020). This framework can construe observations as a prediction of future events and act as 
foundations for ideas and help us to come up with questions regarding the observed 
behaviours (Calder et al., 2018). By defining and employing an appropriate model and 
considering important parameters in the related traffic scenarios, we could see what would 
happen in interaction scenarios considering agents’ trajectories, decision time (response and 
reaction time) and social preference and therefore would be able to opt for better algorithm 
designs in this field  as, for example, the research shows that heterogeneity of the drivers, 
pedestrians, vehicles, and road environment has not been considered in the model 
development of the most past related studies clearly (Amado et al., 2020).   

This section is divided into four parts: At first, models which assume that humans are 'optimal' 
or 'rational' and/or those that based on some predefined rules are discussed. In the second 
part the models that try to describe not only the data, but also a hypothetical underlying 
process (or mechanisms) generating that data are discussed. That is, models based on 
psychological mechanisms underlying human behaviour.  The third part covers more recent 
modelling approaches that are based on artificial intelligence. The fourth and final part models 
that are mostly used in traffic simulation are covered. Although this classification may be 
reasonable, some models clearly fit on more than one of the modelling categories. For such 
models we have chosen the place where we think it fit the best, but acknowledge that they 
(almost) equally well fit into another of the categories.  

3.1 Rule-Based Models 

Rule based models are often considered as mathematical models that are data driven. These 
modelling methods are widely used for different purposes in transportation engineering and 
traffic safety to predict terms like decision-making (e.g., route-choice modelling), acceleration 
deceleration behaviour, gaze pattern, and other safety measures. The overall goal of these 
models is to convert actual observations into expectations of future events.. In practical terms, 
these models are able to predict an anticipated outcome from a given set of parameters 
(Calder et al., 2018). Over time, rule-based models have developed thanks to a greater 
availability of data and increased computation power. Different considerations affect our 
decision for choosing the appropriate type of modelling for our research. First is the intended 
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output of the model, then the type, variables, and quantity of data available. Due to the 
complexity of human behaviour, different models have been developed to address this 
complexity by incorporating different parameters and terms that may describe different 
aspects of human behaviour. All these models have limitations and advantages that are 
introduced in the last section of this chapter. In the following subsections, the most important 
modelling strategies in the section of rule based behavioural modelling are introduced in brief. 
Note that some of these model types (and examples of them) are used as model components 
in [models of human decision-making & behaviour] and other are mostly used in traffic 
simulations. These models could also have been placed in those section (section 3.2, and 
section 3.3), but are here provided as examples of rule-based models. 

3.1.1 Types of models 

Rule based models are often considered as mathematical models that are data driven. These 
modelling methods are widely used for different purposes in transportation engineering and 
traffic safety to predict terms like decision-making (route-choice modelling), acceleration 
deceleration behaviour, gaze pattern, and other safety measures. The objective of these 
models is to translate real observations into anticipation of future events. In practical terms, 
these models are able to calculate an anticipated result from a given set of variables (Calder 
et al., 2018). Over time, rule-based models have developed thanks to a greater availability of 
data and increased computation power. Different considerations affect our decision for 
choosing the appropriate type of modelling for our research. First is the intended output of the 
model, then the type, variables, and quantity of data available. Due to the complexity of human 
behaviour, different models have been developed to address this complexity by incorporating 
different parameters and terms that may describe different aspects of human behaviour. All 
these models have limitations and advantages that are introduced in the last section of this 
chapter. In the following subsections, the most important modelling strategies in the section of 
rule based behavioural modelling are introduced in brief.  

3.1.1.1 Social Force Model 

This type of modelling was originally developed by Dirk Helbing (1995), and is mainly used for 
pedestrian motion modelling (Helbing & Molnár, 1995). Since its early development, many 
researchers have tried to develop this modelling approach further and have added more terms 
to increase its efficiency. Social force models can describe the dynamic movement of agents 
(e.g., bicycles or pedestrians) in space or time (Huang et al., 2017). Among the dynamic 
pedestrian flow models, the social force models have been widely used in the areas like 
transportation station management, building evacuation, and safety management (Chen et al., 
2018). Social force models use differential equations to explain the continuous movement of 
the agents in space. These equations and their related parameters can be described from the 
kinematics’s perspective (positions and speed).  

The concept of this modelling strategy is that agents (e.g., pedestrians) are limited by social 
forces and internal motivations. These forces include the driving forces for reaching the target, 
repulsive forces from other parties (e.g., other pedestrians), obstacles, boundaries, and 
attraction forces of companions and stores (Chen et al., 2018). Personal motivations include 
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speed and acceleration, and on the other hand they are restricted by their situation and the 
environment that they are moving through. A pedestrian simulation software has been 
developed with this modelling approach for assessing pedestrian motion behaviour at different 
scenarios (Chen et al., 2018). The improved versions of social force models have a powerful 
capability for describing pedestrian movement and imitating self-organizing events. While 
there are some challenges with this modeling approach for validation application of the social 
force model in other motion-based scenarios like cycling (Chen et al., 2018).  

3.1.1.2 Cellular Automata Model 

Cellular automata models were developed by Nagel and Schreckenberg (1992) to simulate 
traffic flow (Nagel & Schreckenberg, 1992). Cellular automata models have the ability to use 
micro level motions of the traffic agents and relate them to macro level performance of the 
traffic network. This is in contrast with other modeling approaches which are either very 
detailed in their scope (microscopic models) or general in their application (macroscopic) for 
analyzing the traffic network. Cellular automata models have the capability of showing each 
vehicle interaction and connecting these interactions with traffic flow performance measures 
like speed and travel time (Saifallah Benjaafar, 1997). 

In this modelling strategy, the road network is divided into small cells which are defined to 
incorporate cars and other road users. In each time step, each cell has two states, they are 
either occupied or not, depending on the presence of a vehicle in each cell. The current state 
of the cars is determined over time to reach their destination. In each time step, the current 
state of the cells will be updated with their attributed variables (e.g., lateral distance and 
forward gap). The updating rules are applied at the same time to all the involved vehicles at 
each iteration (Saifallah Benjaafar, 1997). There are two types of cellular automata models: 
deterministic and stochastic; the stochastic approach considers the inherent randomness in 
the vehicles’ behavior in real traffic. In the deterministic approach of cellular automata, all the 
vehicles behave in the same way, and they may have the same speed limit which would be a 
quite simplified version of real traffic. Despite this deficiency, they are still a valuable tool for 
analyzing a fully automated traffic network where the speeds and accelerations of all the 
agents are predefined and controlled. In this modelling approach we can assign characteristics 
to each traffic agent. Doing so, they can imitate traffic flow more realistically (Lárraga et al., 
2005). Since the work by Nagel and Schreckenberg (1992), several researchers have 
developed more advanced versions of this modelling approach, to simulate traffic flow more 
realistically (Belitsky et al., 2001). 

3.1.1.3 Artificial Neural Network Models 

Artificial neural network models are supervised learning systems that use mathematical 
models in their inner layers, and to some extent try to simulate the way that the human brain 
normally processes infromation. Information explaining a specific situation is taken as the input 
of this methodology, and a decision or answer is the outcome (Aghabayk et al., 2015). Among 
many subject areas in the field of transport, the highest proportion of using neural network 
models is in the context of driver behavior and autonomous vehicles (Dougherty, 1995). These 
models learn human behaviours from training data and are, in a perfect world, capable of 
extrapolating those human behaviours in a new situation. Artificial neural networks have been 
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used in a number of driver-behaviour modelling studies, including modelling lane changing 
(Rahman et al., 2013) and car following (Khodayari et al., 2012).  

Despite the wide application of this approach in different disciplines, there are two main 
disadvantages to this methodology, one is that Neural network models are totally data 
dependent and they need supervised training. The other drawback is that they require field 
collected traffic data for their calculation, although results in previous studies indicate that this 
approach can accurately predict driver’s behavior like lane changing behavior (Huang, 2014). 
Another issue with this methodology is that it is a “black box” method for modeling, where 
humans generally are not able to discern the inner working procedure of neural network, to 
understand what different parts do. In other words, neural network models can be viewed by 
the users only by the input and output of the model without giving any explanations about the 
internal working procedure (Aghabayk et al., 2015). (A broad description of AI based modelling 
is provided in chapter 4 of this section.)  

3.1.1.4 Fuzzy Logic Models 

In general, a fuzzy logic system is a nonlinear mapping of an input data (features) vector into 
a scalar output (Mendel, 1995). The fuzzy logic theory is developed based on the idea that 
human thinking is not happening based on the numbers but rather based on the labels fuzzy 
sets (Kalinic & Krisp, 2019). The main idea behind fuzzy logic is that variables can be 
represented by fuzzy sets and consequently we avoid rigid binary values. As a result, Fuzzy 
logic approach gives us this opportunity to deal with vague and imprecise concepts (Kalinic & 
Krisp, 2019). One of the main characteristics of fuzzy logic models is that they take into 
account the actual and natural perception of variables and consider the uncertainty of 
behavioral events (Mendel, 1995). They translate nonlinear systems into IF-THEN rules. 
There are two main terms in fuzzy logic modelling approach, the first is the membership 
functions and the second is the fuzzy inference process (for more information related to these 
terms see this paper (Kalinic & Krisp, 2019). There are different types of membership functions 
including triangular, gaussian, sigmoidal and polynomial. One essential step in the fuzzy logic 
process is to establish a mechanism for defining how to relate the input data to output results. 
This will be answered by setting if-then rules.  

In the fuzzy logic rules both objective and subjective aspects of an issue can be utilized to 
solve a real-world problem. It is worth noting that there is a traffic flow simulation software 
(FLOWSIM) that is developed mainly by using fuzzy logic rules (Kalinic & Krisp, 2019; Mendel, 
1995). On the other hand, one must consider that there are some difficulties in determining 
fuzzy rules. One of the challenging parts of applying fuzzy logic models is defining input 
parameters since it needs profound knowledge and experience in the field of study. If the 
drivers’ perceptions are not defined properly in the model, the model’s output will be unrealistic 
and the prediciton will be inaccurate. Two major challenges in employing fuzzy logic rules are 
the validation of membership functions and determining fuzzy rules (Aghabayk et al., 2015).  

3.1.1.5 Discrete Choice Models 

This modelling approach explains and predicts the choice between two or more discrete 
options. This methodology, theoretically or empirically predicts choices made by people 
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among a finite set of options. Discrete choice models have been widely used in marketing, 
transportation, economy, and other areas to study both revealed and stated preference data 
(Keane, 1997). Discrete choice models are widely used by Transport planners to estimate 
traffic demand. As a famous example of using discrete choice modelling, Ahmad et al (1999) 
categorized lane change decision making of drivers as mandatory, discretionary and forced 
merging (Casello & Usyukov, 2014; Moridpour et al., 2010). He proposed a model which 
predicts the probability of performing mandatory, discretionary, and forced lane changing at a 
given time. Another example of using discrete choice modelling in transportation engineering 
is the route choice behaviour of people when they are choosing between a limited number of 
alternatives for their trip including cycling, walking, and bus (Prato, 2009). There are different 
types of discrete choice models including binary logit, binary probit, multinomial logit, 
multinomial probit, nested logit, mixed logit (Nagel & Schreckenberg, 1992).  

The most common type of discrete choice modelling has been multinomial logit (MNL) which 
is widely used for travel behaviour analysis. The attractiveness of MNL is coming from the fact 
that the probabilities are easy to estimate in this approach. The problem with this modelling 
approach is that they are making strong assumptions about an individual’s behaviour. The 
most common issue about these assumptions is with the independence of irrelevant 
alternatives property, which says that if we introduce a new alternative to a set of choice, then 
the choice probabilities fall proportionately for the all the existing alternatives (Keane, 1997). 
As an example of using logit model in the context of human VRU interaction, Silvano et al 
(2016) investigated the probability of yielding or not when a bicycle is interacting with a vehicle 
at a roundabout (Silvano et al., 2016). 

3.1.1.6 Game Theoretic Models 

Game theoretic models were first introduced and formulated by John F. Nash (1950). There 
are four basic elements in game theory models: 1) player or participants of the game: the ones 
who decide about their strategy, 2) a set of strategies: the strategies that are available for the 
players to play 3) payoff functions: after players decide on which strategy to do, there is a 
payoff or result for their action, which shows gain or loss; and 4) order of playing: when players 
want to decide their strategies, there is a need to decide the orders. Sometimes the order of 
playing games happens at the same time and sometimes they make decision one after 
another.  

Six common types of game theoretic models have been used frequently in transportation 
engineering including ordinary non-cooperative game, generalized Nash equilibrium game, 
Cournot game, Stackelberg game, bounded rationality game and Repeated game. Examples 
of using this modelling approach are, modelling lane changing using game theory (Talebpour 
et al., 2015) and interaction modelling between pedestrians and vehicles (Camara & Fox, 
2020). Game theory’s application is at situations when agents or parties should make rational 
decisions about their actions in relation to other parties (Zhang et al., 2010). 
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3.1.2 Advantages and Limitations 

Table 5 presents the most notable advantages and limitations of the above-mentioned 
modelling approaches. For better understanding of the limitations, please see the suggested 
reading section with recommended references. 
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Table 5 Advantages and limitations of rule-based models 

Model type Advantages Limitations 

Cellular automata model 

Simplicity in modelling, small number 
of variables 

Assuming all agents behave in a same 
way, difficulty in parameter calibration 

High capabilities in traffic simulation in 
multi lane highways. Other behavioural 

models like lane changing can be 
easily accounted for in the modelling 

framework 

Game theory 

Simplicity in modelling, small number 
of variables 

Doesn’t consider driver variability in the 
model, binary answers, difficulty in 

parameter calibration 
useful method in cases that the firms 

are independent 

In case of mixed strategies, the 
method of solving games is very 

comlicated 
Providing a systematic quantitative 

approach for deciding the best strategy 
in competitive situations 

  

Determining pay-off functions and 
values of players of the game is 

difficult 
Assuming all players are rational 

Artificial neural network models Attempts to capture driver’s variability 
by training data 

Completely data driven and require 
supervised training 

Require large amount of data 

Discrete choice models 

Decide based on maximum gained 
utility 

Require calculating the probability 
functions to determine the utility of 

each choice 
Probabilistic results instead of binary 

answers 
Making strong assumptions in their 

theory 
  Easy to implement and interpret 

Fuzzy logic models 

A powerful solution for solving complex 
problems in all fields of life, as it 
resembles human reasoning and 

decision making.  
 

Time-consuming to define and develop 
fuzzy rules and membership functions. 
It’s hard to interpret the outputs of the 

modelling  
 

High precision  
 

 For more complex scenarios it 
requires to define more fuzzy grades 
which result to increase exponentially 

the rule 
 

Based on linguistic model  
 
  

 Restricted number of usages of input 
variables 

Using simple mathematics for 
nonlinear, integrated and complex 

systems 
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G., Robertson, D., Rosewell, B., Sherwin, S., Walport, M., & Wilson, A. (2018). 
Computational modelling for decision-making: Where, why, what, who and how. Royal 
Society Open Science, 5(6). 

• Chen, X., Treiber, M., Kanagaraj, V., & Li, H. (2018). Social force models for pedestrian 
traffic–state of the art. Transport Reviews.  

• Zhang, H., Su, Y., Peng, L., & Yao, D. (2010). A review of game theory applications in 
transportation analysis. Proceedings of ICCIA 2010.  

3.2 Models based on psychological mechanisms underlying human 
behaviour  

Here, two behavioural modelling approaches are discussed briefly: Evidence Accumulation 
Models (EAMs) and Behavioural Game Theory (BGT).  

EAMs suggest that evidence for a particular response is integrated by single or multiple 
accumulators over time and by some rate known as ‘drift rate’: The rate at which sensory 
information reaches a boundary (a decision boundary) is determined by the quality of evidence 
extracted from the stimulus or memory (Ratcliff, Roger et al., 2016). The accumulation process 
is noisy which means in each time step, the evidence may direct attention to one or the other 
of the two boundaries (or two poles of one boundary), but more frequently to the correct than 
the incorrect one. The boundary defines the amount of evidence that should be accumulated 
before a response is made (Ratcliff, Roger et al., 2016). A response is chosen when the 
evidence for one alternative reaches some level of evidence that triggers a decision. These 
models usually have two major applications – the first is to accumulate informative evidence 
for/against every competing hypothesis and second, to accumulate affective assessments 
for/against each of several courses of action (Busemeyer et al., 2019). Overall, EAMs have 
been used so far in simple driving tasks like response time and psychomotor vigilance test 
(Ratcliff, Roger et al., 2014), brake response (Svärd et al., 2020), steering control scenarios 
(Markkula et al., 2018a), collision threat detection task and time to collision estimation 
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(Daneshi et al., 2020), driver gap acceptance in turns (Zgonnikov et al., 2020), pedestrian 
crossing decision (Sargoni and Manley, 2020), detection response task (Howard et al., 2020), 
AV-human interactions in take over and crossing scenarios (Markkula et al., 2018b) and 
modelling cognitive load in driver distraction context (Castro et al., 2019).    

BGT employs experimental evidence to make computational models of human cognitive 
limitations, social utility and learning rules aware of ‘how people actually behave in strategic 
situations’ (Camerer, 2003). One of the most important components of this model is the theory 
of how people make a choice in one-shot games or in the first round of a repeated game and 
this is where related studies indicate that Nash equilibrium in conventional game (GT) theory 
(i.e., a set of decision strategies indicating individuals cannot make their gain better by 
unilaterally changing the strategy in non-cooperative games) is often a poor description of 
human players' behaviour especially in unrepeated normal-form games (Wright and Leyton-
Brown, 2017). In traffic interactions, for instance, crossing scenarios involving a pedestrian 
and an AV can be considered as non-cooperative simultaneous repeated games which can 
be solved using mixed-strategy algorithms. These models include but not limited to level-k 
reasoning (Stahl et al., 1995), cognitive hierarchy theory (Camerer et al., 2004), logit quantal 
response equilibrium (McKelvey et al., 1995), noisy introspection (Goeree et al., 2004) and 
the dual accumulator model (Golman et al., 2019). Concerning traffic interactions, a few 
studies have been employed the mentioned models such as Level-k reasoning (Albaba and 
Yildiz, 2020) and cognitive hierarchy reasoning (Li et al., 2019) and showed that they can 
simulate the traffic conditions well. 

3.2.1  Advantages and Limitations 

Most of the normative models that have been discussed in the previous section assume that 
road users act mostly like moving objects without considering each other’s intentions before 
taking every decision which makes it hard for one to account for interdependencies and have 
a meaningful level of model order (i.e., the problem of infinite regress). Behavioural models 
can account for this shortcoming by considering each agent’s intention and preference in each 
decision task. Moreover, unlike conventional GT, BGT suggests that people are not totally 
self-interested (i.e., preferences are highly context-dependent) and they do not make 
decisions based on absolute outcomes but according to a heuristic estimate of the potential 
value of losses and gains (Kahneman and Tversky, 1979).  

While EAMs provide an ample level of detail of decision-making process, they can do that for 
a very constrained set of tasks and typically are considered as a single-decision models which 
suggests they may not be a good framework for all type of interaction scenarios. In addition, 
both BGT and EAM are in their infancy with regard to traffic interactions. especially considering 
vehicle-pedestrian scenarios; more work is needed to understand the potential of these 
models in this context. 

Suggested Reading   

• Bhatia, S. (2013). Associations and the accumulation of preference. Psychological 
review, 120(3), 522. 
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• Bhatia, S. (2016). The dynamics of bidirectional thought. Thinking & Reasoning, 22(4), 
397-442. 

• Camerer, C. F., & Fehr, E. (2006). When does" economic man" dominate social 
behavior?. Science, 311(5757), 47-52. 

• Colman, A. M., Pulford, B. D., & Lawrence, C. L. (2014). Explaining strategic 
coordination: Cognitive hierarchy theory, strong Stackelberg reasoning, and team 
reasoning. Decision, 1(1), 35. 

• Evans, N. J., & Wagenmakers, E. J. (2019). Evidence accumulation models: Current 
limitations and future directions. 

• Purcell, B. A., & Palmeri, T. J. (2017). Relating accumulator model parameters and 
neural dynamics. Journal of mathematical psychology, 76, 156-171. 

 

3.3 Artificial Intelligence Based Models 

Artificial Intelligence (AI) can be defined as intelligence representation by machines or 
systems. Machine Learning (ML) and Deep Learning (DL) are two most common tools used 
for AI. Unlike rule-based or statistic-based methods, AI-based methods for modelling rely more 
on large datasets, and where the model can learn directly from the data. 

AI-based methods are applied in various field, including the classification, regression, 2-
dimentional image segmentation, and object detection. It can be widely used in the field of 
intelligent vehicles. In the SHAPE-IT project, we are concerned about the interaction between 
humans and automated vehicles. AI-based modelling from this perspective mainly includes 
the following research questions: 

RQ1: How AI based modelling can be used to investigate vehicle-VRU interaction? For this 
research question, we mainly focus on Artificial Intelligence (AI) and Human Factor. This 
research question corresponds to the VRU behaviour, and can be divided into several sub-
questions, including: a) what is the state-of-the-art algorithm of pedestrian behaviour 
prediction? b) what is the influence of vehicles on pedestrian’s low-level information, or 
pedestrian’s trajectory? c) what is the influence (interaction) of vehicles on pedestrian’s high-
level information, or pedestrian’s crossing intention? d) how do the pedestrians interact with 
automated vehicles, and how could we use this information to support human factor design? 

RQ2: How can AI based modelling be used to investigate vehicle-vehicle interaction? 

RQ3: How can AI based modelling be used to investigate vehicle-driver interaction? 

RQ4: How are AI based modelling affected by Human factors, and how can it be used in 
automation design? 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 

 

PUBLIC 
  68/106 

3.3.1 Available Tools 

For AI-based modelling, there are some available tools and methods to assist us. Deep 
Learning (DL) is one of the most powerful tools. Because these tools can learn features and 
build models directly from dataset we feed in, they can be generally used to solve various 
tasks. 

Convolutional Neural Networks are very powerful for extracting features from images directly. 
These networks can perform tracking (Ma et al., 2015; Wang et al., 2015), trajectories 
predictions (Casas et al., 2018) and intention classifications.  

In the field of the pedestrian trajectory prediction, recent research on DL has showed the 
potential of learning features directly from data. The methods based on Recurrent Neural 
Networks and their improved version - Long short-term memory, are preferred by many 
researchers because of their strong ability to handle the trajectory sequence information (Alahi 
et al., 2016; Xue et al., 2018).  

Generate Adversarial Networks are increasingly widely used for pedestrian trajectories and 
behaviour prediction recently (Gupta et al., 2018; Li et al., 2019). This kind of methods can not 
only provide a solution to regress the ground truth in training data but can also generate other 
possible solution which not in the training data. These networks can overcome the difficulties 
in approximating intractable probabilistic computation but may not be easy to get to converge 
during training.  

However, when there are not enough data that can be used for DL training, the usage of DL 
can cause overfitting. In this situation, machine learning methods can be used, especially in 
intention classifications, such as Support Vector Machine and Random Forest. For regression 
tasks, the Linear Regression (LR) is also a useful tool to use. 

3.3.2 Advantages and Limitations 

Using AI-based modelling has some advantages compared to the use of rule-based methods. 
Generally speaking, the rule-based or statistic-based model usually requires the knowledge 
of the experts to design the features and models, and they are hard to generalized to another 
dataset. But with AI-based model, the deep learning structure can learn the features and 
model parameters directly from dataset, and can be easily generalized to other scenarios. 

Besides, the hand-crafted models are difficult to be designed completed, and not easy to 
capture the complex feature of the data distribution, especially when the features of the data 
are non-linear. By contrast, deep learning networks can extract the complex feature of the 
datasets, and can deal with non-linear property better. 

Take pedestrians behaviour prediction for example, the great challenge of pedestrians’ 
intention prediction is that pedestrians can change their direction and velocity suddenly (Volz 
et al., 2015) and they tend to interact with the other road users and surroundings. Therefore, 
it is difficult to reliably predict the intentions of pedestrians by hand-crafted features. The AI 
based modelling methods can avoid this problem – the model can learn the features directly 
from data, and build the model implicitly with neural networks. 
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There are also limitations of the AI based modelling of pedestrian behaviour. Because the 
neural networks usually model human behaviour as black box, it is hard to explain the models. 
Also, when the models do not work well, it is also not easy to modify and tune the AI model. 
Some other limitations are: a) AI based models usually need a large amount of labelled data, 
b)the annotation could be time consuming and expensive, and c) the model training time can 
be substantial for complicated AI models. 

3.3.3 Limitations from the Perspective of Human Factors 

AI components behave differently from conventional components. In particular, there is a 
certain level of uncertainty that depends on the accuracy of the AI model. Thus, for a system 
such as an AV, one cannot specify the exact behaviour (since in fact the behaviour should 
depend on partially unanticipated automatic decisions that the system makes in a given 
context). Thus, one must find ways to specify the corridor in which an AI-based system can 
make decisions. This depends on a good definition of the context in which the system operates 
and the quality or suitability of data in this context (See Section 4 on Requirements 
Engineering).  

 
At the moment, several gaps in AI-based modelling research exist in the state of the art:  

There is no established method to define a corridor of acceptable behaviour. Goal-models can 
work, but tend to fail scaling to the complexity of AVs. Scenario-based approaches are by 
example, and thus do not offer sufficient completeness for building safety cases. System-
centric feature requirements do not scale or to reach a sufficient level of completeness (i.e., 
one would need millions of system requirements to describe simple goals).  

There is no established method to define the context of operation. ODDs (operational design 
domains) are fashionable in the automotive field, but not yet integrated in development 
methods. In particular, they leave many open questions with respect to safety argumentation 
(Gyllenhammar et al., 2020). 

There is no established framework to describe the quality of input or output data in a given 
context.  

In addition, data-driven approaches and AI modelling do not sufficiently cover all aspects of 
human factors and should be complemented with problem-based requirements derived from 
human factors. Because people are not limited in their behaviour, they can be way more than 
in a set of data. Humans have intelligence which allow humans to act differently. In AI based 
automated vehicles, decision-based algorithms work in similar ways, they have capability to 
learn by themselves but they follow pre-defined behaviour and struggle to deal with completely 
new situations. Inability to adjust to new situations and inability to fully comprehend and learn 
human behaviour will surface as system failures or bugs in the real-world, if not mitigated 
through a systematic approach to understanding human factors and system requirements. 

Suggested Reading   
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Social LSTM: Human trajectory prediction in crowded spaces. Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition. 
https://doi.org/10.1109/CVPR.2016.110 

• Casas, S., Luo, W., & Urtasun, R. (2018). IntentNet: Learning to Predict Intention from 
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Recognition. https://doi.org/10.1109/CVPR.2018.00240 

3.4  Simulation of traffic interaction 

The word ‘simulation’ describes an approximate imitation of a certain situation or process. 
With advancement in technology computer simulations become more and more popular in 
different scientific domains. Traffic is one domain that has extensively used computer 
simulations. This section provides a broad overview of different simulation and modelling 
approaches for both motorised and non-motorised traffic. 

3.4.1 Motorised traffic simulation 

Motorised traffic simulation models are broadly classified as macroscopic , microscopic and 
mesoscopic simulations. Macroscopic models describe traffic as a continuum flow and only 
considers aggregated variables such as average flow, average density and average speed 
(van Wageningen-Kessels et al., 2015). Microscopic models, on the other hand, describe how 
individual vehicles behave within the network, Mesoscopic models fall between macroscopic 
and microscopic models and simulate vehicle movements in aggerate terms such as 
probability distributions (van Wageningen-Kessels et al., 2015). Macroscopic and mesoscopic 
simulations are out of the scope of this document, as their application in SHAPE-IT seems not 
to be likely, so we will only discuss microscopic models of traffic simulation. 

A microscopic simulation model is composed of physical components and associated 
behaviour models. The physical components include a road network, road users and traffic 
control systems, while driving behaviour and route choice models are part of behavioural 
models. Simulations of individual vehicle units in a microscopic model are based on car 
following (longitudinal movement), lane changing (lateral movement) and gap acceptance 
models.   

Car following models describe the process through which individual drivers follows each other 
(Brakstone and McDonald, 1999). Car following models are further categorized mainly into 
three different categories; (a) safe-distance models (e.g., Pipes, 1966; Gipps, 1981), (b) 
stimulus-response models (Treiber et al., 2000), (c) psychophysical or action point models 
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(Wiedemann, 1974). Table 6 shows some of the most famous models in each category and 
their main characteristics.  
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Table 6 Car following models 

Category Characteristics Famous models 

Safe-distance models Vehicles adjust speed and maintain a safe 

distance from their leader 

Pipes, Gipps 

Stimulus-Response models Acceleration of drivers is reaction to (a) own 

current speed, (b) distance to leader and (c) 

relative speed to the leader 

Gazis-Herman-Rothery model, Intelligent 

driver model, optimal velocity model 

Psychophysical or action point 

models 

Drivers react when the change is large 

enough to be perceived 

Wiedemann car following models 

 

The second most common behaviour observed in traffic after the car following is lane 
changing. Lane changing can be categorized as mandatory and discretionary. A mandatory 
lane change occurs when the driver wants to change lane in anticipation of a turn (left or right) 
or to avoid a lane closure in the downstream. While a discretionary lane occurs when the driver 
is not satisfied in driving within same lane (e.g., due to slow moving vehicle ahead) and desires 
a faster speed, large following distance etc. (Vechione et al., 2017). In a microscopic 
simulation, lane changing models describe the decision process of driver during a lane change 
in a given time. Rahman and Chowdhury (2013), broadly classifies lane changing models into; 
(a) changing models for adaptive cruise control, and (b) computer simulation. The lane 
changing models for simulation are further categorized as rule-based models, discrete-choice-
based models, incentive-based models and artificial intelligence models (see Table 7). 

 

Table 7 Lane-changing models for simulation 
Category Model Reference(s) 

Rule-based model 

Gipps model Gipps (1986) 

CORSIM model Halati et al., (1997) 

ARTEMiS model Hidas (2005) 

Cellular-Automata model Rickert et al., (1996); Nagel et al., (1998) 

Game theory model Kita (1999) 

Discrete-choice-based models 
Ahmed’s model Ahmed (1999) 

Toledo et al’s model Toledo et al. () 

Incentive-based models 
MOBIL Kesting et al. (2007) 

LMRS Schakel et al. (2012) 

Artificial intelligence-based models 
Fuzzy-logic-based models Das & Bowles (1999) 

Artificial neural network model Dumbuya et al. (2009) 

 

Another important component of a microscopic simulation is the gap acceptance model. Gap 
acceptance is used to determine the number vehicles that can pass through a conflicting point 
in a given time. Gap acceptance is an important parameter in simulation of vehicle movements 
at unsignalized intersections, roundabouts and lane changing on freeways (Ozbay et al., 
2014). Gap acceptance models captures driver’s decision making and determines the size of 
a gap that a driver might accept or reject while aiming to merge or cross the intersection.  
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3.4.2 Non-motorised traffic simulation 

The non-motorised modes of transport consist of walking, cycling and other varieties of 
human-powered transportation (Biggar, 2019). However, the scope of this section is limited to 
study of the pedestrian movement (walking) using modelling approaches.  Although the 
literature on pedestrian simulation is limited compared to motorised traffic, it is gaining a 
significant attention nowadays. For example, Kouskoulis & Antoniou (2017), presented a 
system review of pedestrian simulation models with a focus on emergency situations.  

The pedestrian simulation models are categorized as macroscopic and microscopic. The 
macroscopic models treat the pedestrian crowds as fluid or continuum which respond to local 
influences (Xia et al., 2009; Guo et al., 2010). On the other hand, the microscopic models 
consider pedestrians as discrete individuals (Guo et al., 2010; Teknomo et al., 2016).  

Guo et al. (2010) further categorizes the microscopic simulation models into a) continuous, b) 
discrete and c) semi-continuous. The continuous models include, social force and optimal 
control theory models. While discrete models include lattice gas and cellular automata models. 
As the name suggests, continuous models describe the continuous movement of pedestrians 
in time and space.  While, space and time are discretized to resemble movement of 
pedestrians. However, in case of semi-continuous models the time is considered as discrete 
while the space as continuous.  For a more detailed understanding please refer to Guo et al. 
(2010). 

Pedestrian simulations have been used to study wide a variety of problems. Over the past few 
decades, pedestrian simulations were largely used to evaluate the effectiveness of proposed 
policies for improvement of the pedestrian facilities (Lovas, 1994; Teknomo et al., 2002). In 
addition to the simulation of normal pedestrian behaviour, simulations have also been applied 
in evacuation and panic research (e.g., Helbing et al., 2002). 

3.4.3 Advantages and Limitations 

Traffic simulations have been extensively used to test and evaluate a proposed strategies of 
traffic improvement before the implementation. One of the biggest advantages of using traffic 
simulation is the saving of both cost and time compared to field methods. Traffic simulations 
also provides opportunities to evaluate the effectiveness of number different strategies within 
a shortest possible time. Traffic simulation has been widely used to answer many questions 
regarding traffic signal optimization (e.g., Stevanovic et al., 2016), modelling lane changing 
and merging (e.g., Hidas, 2002), evaluation of advanced traffic management system. Traffic 
simulations have also been widely used to study the impact of connected and autonomous 
vehicles on traffic flow (e.g., Talebpour and Mahmassani, 2016; Lu et al., 2020). More recently, 
researchers integrated traffic simulations with driving simulators to produce more realistic 
traffic scenarios in the driving simulator (That & Casas, 2011; Jeihani et al., 2017).  

Although traffic simulation has several advantages, it has also various limitations. Microscopic 
traffic simulation is considered as a cost effective and time saving approach to conduct 
detailed analysis of complex traffic situations.  However, the validity of its results depends 
mainly on two things; (a) if the model is able to replicate the behaviour of road users observed 
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in the real situations, and (b) how well it is calibrated to the real world.  Calibration is the 
process of changing default parameters to reduce the error between simulated results and the 
actual results to a required threshold value (typically based on real-world data).  The behaviour 
of pedestrians in comparison to the drivers is more complex and is easily affected by the 
surroundings (Guo et al., 2010). Hence, it is very difficult to validate and calibrate pedestrian 
simulation models. 

3.4.4 Available Tools 

Table 8 presents the most common software options available in the field of traffic modelling 
and simulation. 

 

Table 8 Traffic modelling and simulation software 
Name Scope Pedestrian Simulation License type 

PTV VISSIM Microscopic Yes Commercial 

AIMSUN Hybrid Yes Commercial 

CORSIM Microscopic Yes Commercial 

SUMO Microscopic Yes Open-source 

PARAMICS Microscopic Yes Commercial 

PTV VISUM Macroscopic - Commercial 

TRANSIMS Microscopic - Open-source 

 

Suggested Reading   

Traffic simulation in general:  

• Barceló, J. (2010). Fundamentals of traffic simulation (Vol. 145, p. 439). New York: 
Springer; Lieberman, E. B. (2014). Brief history of traffic simulation. Traffic and 
Transportation Simulation, 17 

• van Wageningen-Kessels, F., Hoogendoorn, S. P., Vuik, K., & van Lint, H. (2015). 
Traffic Flow Modeling: a Genealogy. Transportation Research Circular. N E-C195. 
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Car Following Models:  

• Brackstone, M., & McDonald, M. (1999). Car-following: a historical review. 
Transportation Research Part F: Traffic Psychology and Behaviour, 2(4), 181-196. 

Lane changing models:  

• Moridpour, S., Sarvi, M., & Rose, G. (2010). Lane changing models: a critical review. 
Transportation letters, 2(3), 157-173 
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changing models and future research opportunities. IEEE transactions on intelligent 
transportation systems, 14(4), 1942-1956. 

Gap acceptance models:  

• Akçelik, R. (2007, December). A review of gap-acceptance capacity models. In The 
29th Conference of Australian Institutes of Transport Research (CAITR 2007), 
University of South Australia, Adelaide, Australia (pp. 5-7). 

Pedestrian Simulation:  

 
• Lu, L., Ren, G., Wang, W., Chan, C. Y., & Wang, J. (2016). A cellular automaton simulation 

model for pedestrian and vehicle interaction behaviors at unsignalized mid-block 
crosswalks. Accident Analysis & Prevention, 95, 425-437. 

• Liu, M., Zeng, W., Chen, P., & Wu, X. (2017). A microscopic simulation model for pedestrian-
pedestrian and pedestrian-vehicle interactions at crosswalks. PLoS one, 12(7), e0180992. 

• Suh, W., Henclewood, D., Greenwood, A., Guin, A., Guensler, R., Hunter, M. P., & Fujimoto, 
R. (2013). Modeling pedestrian crossing activities in an urban environment using microscopic 
traffic simulation. Simulation, 89(2), 213-224. 

Traffic simulation tools:  

• Kotusevski, G., & Hawick, K. A. (2009). A review of traffic simulation software 
• Jones, S. L., Sullivan, A. J., Cheekoti, N., Anderson, M. D., & Malave, D. (2004). Traffic 

simulation software comparison study. UTCA report, 2217. 
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4  Requirements Engineering  

Automated systems are playing an important role in our daily life, with the advancement of 
technology and available functionality we are getting more dependent on these systems. To 
take the full advantage of these automated systems, human factor experts provide certain 
requirements which are sometimes not considered in full by developers. For example, human 
factors experts provide user experience vision and usability evaluation which helps to increase 
the system safety, trust and acceptance.  

The companies try to integrate human factors, but it is not clear that how to include and 
communicate this knowledge (Dul et al., 2012) to the developers, particularly in large scale 
agile development. In large scale development, human factors knowledge is often neglected 
because of communication challenges (Dresner, 2015), difficulties of including user 
experience (Larusdottir et al., 2017), iterative development and due to fast delivery and short 
release time.   

These factors lead us to find a solution to integrate human factors requirements within the 
state-of-the-art requirements engineering process, aiming to remove the communication gap 
between developers and human factors experts.  

Requirements Engineering (RE) is a systematic approach to reduce the likelihood of a 
development of the wrong solution (i.e., one that does not solve the problem). RE does not 
only answer questions about what system to build and how to engineer it, but also whether 
we need to engineer this system why and to what extent. Thus, RE must not only obtain a 
technical perspective but inherently a social perspective as well. While not directly a modelling 
approach, the sum of all requirements can be seen as a conceptual model of the conditions 
and capabilities that a system must possess and for this reason, we list it here in this report. 

4.1  The Importance of Requirements 

Within system and software engineering, RE is generally considered to be a key factor of 
success. Despite of its significance, this discipline is not well understood across 
multidisciplinary projects. Particularly when we talk about non-functional or quality 
requirements because different professionals may have discrete perspectives. Depending on 
the contextual factors (Schneider et al., 2018), this accounts for both academia and industry 
(Vogelsang et al., 2020). The main purpose of requirement engineering is to make sure that 
the system under development meets customers’ expectations with minimum cost and time.  

Studies show that poor requirement management can be the single largest cause of many 
software failures. From all around the world there are many real-world examples of software 
failures, which have catastrophic results including loss of both financial and human lives due 
to improper requirement engineering. Further studies show that cost of error correction 
increases with the development phases of SDLC (software development life cycle).  
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As technology is continuously changing and as the complexity of systems is increasing, 
approaches to requirements engineering also need to evolve. Traditionally companies were 
using plan-driven approaches for requirement engineering, where requirements are analysed 
and specified in a specific phase. Recently, many companies transition to value-driven (or: 
agile) approaches, where systems are built iteratively. This allows these companies to validate 
that a system indeed solves its purpose in small increments and to provide value early and, 
through regular updates, consistently, to the customers. While such approaches promise 
companies to be more responsive to changing requirements and to achieve fast delivery of 
new functions, it requires to rethink how requirements are engineered in parallel to system 
development. This is especially true for complex systems such as automated vehicles. 

4.2 Types of Requirements 

According to IEEE, a requirement is a condition or capability needed by a user to solve a 
problem or to achieve an objective (IEEE, 1990). Glinz (2007), suggests to distinguish different 
types of requirements, most importantly functional and non-functional requirements (see 
Figure 13; note that the term non-functional requirements are discouraged but widely used to 
describe [quality] attributes and constraints). 

 

 

Figure 13 Requirements taxonomy according to Glinz (2007)  

 

Functional requirements 

Functional requirements include all requirements that a system must possess to enable the 
user to achieve their tasks. We can also say that functional requirements are all the 
functionalities of the system that users use to accomplish their work. For example, vehicle 
should provide an alert to driver on detection of an object through rear camera sensors.    
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Non-functional requirements 

Following the taxonomy proposed by Glinz (2007), non-functional requirements are attributes 
and constraints of the system. System attributes includes performance requirements and other 
specific quality requirements as shown in Figure 13. For example, a non-functional 
requirement could specify how quickly the system should provide alert to driver, when a threat 
is detected by camera sensors. 

4.3  Requirements Engineering Activities 

Requirement engineering process includes following activities (Leffingwell & Widrig, 2003)  

Requirement Elicitation 

During Requirements Elicitation, requirement engineers discover and gather stakeholders 
(customer, user and others) requirements (needs and wants) using different elicitation 
techniques (such as interviewees, prototyping, storyboarding etc). While this is typically the 
first activity to perform in requirements engineering, it is usually necessary to return to this 
activity periodically. 

Requirement Analysis 

In this process, the elicited requirements are analysed. The activity involves reviewing the 
requirements to remove ambiguities, conflicts and inconsistences. It is examined if there is 
any missing or extra requirement. The related requirements are grouped together and 
processed to different categories for better clarity and understanding.  

Requirement Specification 

This is a process where requirements are captured in one or more ways including natural 
language, formal modelling approaches or mathematical expressions. The stakeholders’ 
requirements are specified in a document or graphical model. Requirements that are specified 
should be complete, clear, correct and consistent.  

Requirement Validation 

The process of confirming that the specified requirements are according to customers and 
user's needs. We ask the customers and users to check and confirm if the requirements are 
correct and complete.  

Requirement Management 

Requirement management is a process to manage all the activities of RE. It includes 
documenting, analysing, prioritizing, tracing, tracking, controlling and reviewing requirement 
changes.  
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4.4  Customer (Problem-based) and Supplier (System-based) 
Requirements 

Problem-based requirements are based on the customer/user requirements. It includes all the 
activities that user must be able to accomplish with the system (Wiegers, 2003) and describe 
requirements from the perspective of the users and the problems that the system should 
address. These requirements are used as input to the system requirements.  Gathering 
customer requirements is a challenging task, partially, because users have difficulties to 
articulate what they actually want. Moreover, information they provide may be incomplete or 
conflicting. In addition, engineers tend to think too early about the possible solutions. Instead, 
customer requirements should as far as possible be formulated independent from potential 
solutions; they should describe the problem-space without unnecessarily constraining the 
solution space. 

In contrast, system requirements are built on the basis of user requirements but from the 
perspective of the system under construction. They tend to describe in more detail which 
properties the system should have to fulfil the customer requirements. System requirements 
are used by developers to develop the system  

Both, customer and system requirements can be of different types, for example, functional 
and non-functional requirements (Sommerville, 2019). Often, a customer requirements 
document is written by the customer and potential suppliers can propose system requirements 
specifications as part of their offer. 

4.5  Limitations 

Transitioning to agile, value-driven and continuous development methods, AV development 
companies are currently re-designing their approaches to requirements engineering. In 
addition, the raise of AI-technology in modern vehicles adds new complexity to defining 
requirements due to their inductive training nature (see the section 3.3.3 for some examples 
relating human factors requirements and AI). Moreover, while adopting agile methods, 
software teams aim to shorten time to market, and are at risk to focus too much on the 
technical perspective and to neglect human factor aspects.  

Human factor knowledge often reveals requirements from the perspective of (human) users 
for a system under development. Requirements Engineering is in principle concerned with 
this, but few concrete suggestions exist with respect to how to practically integrate knowledge 
about human factors in RE for agile work. This is concerning, especially because of the multi-
disciplinary nature of AV development that requires to align the opinion of experts from many 
domains (such as mechanical, hardware, software, as well as human factors). Given these 
challenges, it is unclear how HF knowledge can be systematically captured as requirements. 

Future work needs to investigate how HF knowledge can be systematically captured as 
requirements in agile AV development. 
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5 Method champions 

Due to the multidisciplinary essence of the SHAPE-IT project, many possible approaches and 
methods are available to the ESRs. It might be overwhelming at times. Therefore, a network 
of Method champions (MCs) and supporting method champions (SMCs) was created.  

A MC is an ESR who uses a specific method extensively as part of their project. Therefore, 
each ESR was assigned to be a MC for such method. His or her role is to be a discussion 
partner for other ESRs who consider employing the respective method, or who is interested 
in knowing more about the method. MC is also responsible for training others in the respective 
method, either online or at network-wide training events. All ESRs are a leading MC for one 
method. Moreover, SMCs were assigned to the leading MCs. The role of a SMCs is to support 
the activities of the leading MC when necessary, especially when preparing a formal training 
for other ESRs. Table 9 presents all ESRs with their MC and SMC roles.  
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Table 9 Overview of the ESRs, method champions, and authorship 

  Name Method Champion Supporting Method Champion for 

ESR1 Nikol Figalova Neuroergonomics Driving simulator (planning and conducting) 

Methodology for setting requirements 

Self-report data  

ESR2 Naomi Mbelekani Trust and Acceptance 
Assessment related to AVs 

On road studies 

Neuroergonomics 

AI based modelling 

Safety Assessment 

ESR3 Chi Zhang AI based modelling  Road user modelling part 2 (behavioural models) 

Safety Assessment 

ESR4 Yue Yang Pedestrian/cycling/other simulator  Road user modelling part 1 (rule-based models) 

ESR5 Chen Peng Driving simulator (planning and 
conducting) 

Driving simulator (data assessment) 

Self-report data  

ESR6 Mohamed Nasser Driving simulator (data 
assessment) 

Naturalistic driving studies 

Test-Track Studies and Wizard of Oz studies 

Driving simulator (planning and conducting) 

Neuroergonomics 

ESR7 Liu Yuan-Cheng Test-Track Studies and Wizard of 
Oz studies  

Driving simulator (planning and conducting) 

Driving simulator (data assessment) 

Trust and Acceptance Assessment related to Avs 

ESR8 Amna Pir 
Muhammed 

Methodology for setting 
requirements 

Safety Assessment 

Self-report data  

ESR9 Wilbert Tabone AR, VR studies   - 

ESR10 Siri Hegna Berge Self-report data  Pedestrian/cycling/other simulator 

AR, VR studies 

Trust and Acceptance Assessment related to Avs 

ESR11 Sarang Jokhio Naturalistic driving studies Road user modelling part 1 (rule-based models) 

Road user modelling part 2 (behavioural models) 

ESR12 Xiaolin He On road studies Driving simulator (planning and conducting) 

Driving simulator (data assessment) 

ESR13 Amir Hossein 
Kalantari 

Models based on psychological 
mechanisms 

Pedestrian/cycling/other simulator 

 Rule-based models  

ESR14 Ali Mohammadi  Rule-based models Models based on psychological mechanisms  

ESR15 Xiaomi Yang Safety Assessment  Rule-based models 

AI based modelling 

 Models based on psychological mechanisms  
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Conclusion  

SHAPE-IT is a unique project which brings together researchers from various institutions 
across Europe, with diverse educational backgrounds, and different fields of expertise. Thanks 
to this diversity, we are able to see the problems of human factors aspects in the design and 
integration of AVs in cities of the future from a holistic perspective and to come with innovative 
ideas. The interdisciplinary approach is a must in order to facilitate development of safe and 
user-centred automated vehicles for urban environments. However, it brings certain 
challenges concerning the research methodology. We try to overcome these challenges by 
organizing and systemizing the empirical and modelling approaches employed throughout the 
project 

This is a multi-author document, prepared by the 15 ESRs involved in SHAPE-IT. The aim 
was to provide a brief overview of the methods that will be employed in their research. Each 
section was prepared by the ESRs that plan to work with such method or approach, with co-
authors as appropriate (e.g., similar and complementary knowledge and interest). The text is 
intended to be informative and easy to follow, rather than exhausting and comprehensive. It 
serves as a source of information and references for anyone interested in the SHAPE-IT 
activities, and in human factors research related to AV design in general.  
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